
Celerity:
High-level C++ for Accelerator Clusters

Peter Thoman1, Philip Salzmann1, Biagio Cosenza2, and Thomas Fahringer1

1 University of Innsbruck, 6020 Innsbruck, Austria
{petert,psalz,tf}@dps.uibk.ac.at

2 Technical University of Berlin, 10623 Berlin, Germany
cosenza@tu-berlin.de

Abstract. In the face of ever-slowing single-thread performance growth
for CPUs, the scientific and engineering communities increasingly turn to
accelerator parallelization to tackle growing application workloads. Ex-
isting means of targeting distributed memory accelerator clusters impose
severe programmability barriers and maintenance burdens.
The Celerity programming environment seeks to enable developers to
scale C++ applications to accelerator clusters with relative ease, while
leveraging and extending the SYCL domain-specific embedded language.
By having users provide minimal information about how data is ac-
cessed within compute kernels, Celerity automatically distributes work
and data.
We introduce the Celerity C++ API as well as a prototype implemen-
tation, demonstrating that existing SYCL code can be brought to dis-
tributed memory clusters with only a small set of changes that follow
established idioms. The Celerity prototype runtime implementation is
shown to have comparable performance to more traditional approaches
to distributed memory accelerator programming, such as MPI+OpenCL,
with significantly lower implementation complexity.

1 Introduction

As Moore’s Law is dying [5], end-users in many computational domains are turn-
ing to increasingly sophisticated parallelization methods in order to see speedups
in their workloads. One particularly promising avenue is GPU computing, which
leverages the high peak performance and energy efficiency of GPUs – or, more
generally, accelerators – to implement suitable algorithms. To achieve even bet-
ter performance and to tackle larger workloads, targeting a compute cluster of
accelerators can be highly beneficial.

While these considerations seem straightforward from a hardware-centric,
parallelism expert perspective, in practical use the programmability of such sys-
tems is a significant hindrance to their broader adoption in domain sciences [9].
Targeting accelerators requires an accelerator-specific API and programming
model, and the most widespread vendor-agnostic option, OpenCL [12], assumes
familiarity with low-level hardware details and imposes significant implementa-
tion effort and maintenance overhead. When targeting clusters, these issues are

2 Peter Thoman, Philip Salzmann, Biagio Cosenza, and Thomas Fahringer

compounded by the additional requirement of managing distributed-memory se-
mantics, usually by leveraging MPI [10] for explicit message passing.

Not only does this type of software stack impose programmability and main-
tenance challenges, it also greatly reduces flexibility in optimizing and adapting
a given program for current and future hardware architectures by hard-coding
data and work distribution strategies.

Celerity aims to address these shortcomings, while keeping the barrier of
adoption for users at a minimum. To this end, the basis of Celerity is SYCL [13],
an open industry standard for programming arbitrary OpenCL devices using
modern high-level C++. Celerity automates the parallelization of SYCL pro-
grams across heterogeneous computing clusters, opting to provide reasonable
defaults and performance for domain scientists, while leaving room for man-
ual tuning on a per-application basis. In this work we focus specifically on the
programmability goals of Celerity, with our central contributions comprising:

– The Celerity API extending industry-standard SYCL programs to distributed
memory with minimal programmer overhead, by introducing the concept of
custom data requirement functors and a virtual global queue.

– A prototype runtime implementation based on a multi-level task graph, which
is implicitly generated and distributed during the execution of a Celerity
program.

– An evaluation of this API and prototype runtime implementation from
both programmability and performance perspectives, compared to traditional
MPI+OpenCL and state-of-the-art MPI+SYCL implementations.

2 Related Work

The increasing prevalence of parallelism in all application domains has warranted
significant research into how the scheduling and partitioning of parallel codes
can be automated [14]. In this section we summarize a number of languages and
libraries which relate to the goals of Celerity.

Charm++ [7] is a task-based distributed runtime system and C++ language
extension. Its global shared address space execution model allows executing asyn-
chronous functions on distributed objects called chares, which may reside on a
local or remote processor and which are transparently invoked through internally
passed messages. Charm++ supports GPUs with a GPU Manager component,
but is not natively designed for accelerator clusters. Furthermore, somewhat re-
ducing programmability, a so-called interface definition file has to be provided
for user-defined classes.

StarPU [2] is a task-based runtime system that provides data management fa-
cilities and sophisticated task scheduling algorithms for heterogeneous platforms,
with the ability to easily implement custom schedulers. Its API is however still
relatively low-level, and does not provide multi-node distributed memory paral-
lelism out of the box. While it does feature facilities to integrate with MPI, even

Celerity: High-level C++ for Accelerator Clusters 3

automatically transferring data between nodes based on specified task require-
ments [1], the splitting and distribution of work still remains the responsibility
of the user.

OmpSs [6], another task-based runtime system and compiler extension, builds
on top of the well-established OpenMP standard. Using extended OpenMP
#pragma directives to express data dependencies between tasks allows for asyn-
chronous task parallelism. The ability to provide different implementations de-
pending on the target device enables OmpSs to also support heterogeneous hard-
ware. By annotating functions that wrap MPI communications with information
about their data dependencies, effectively turning them into tasks as well, OmpSs
can integrate them into the task graph and interleave OpenMP computations
with MPI data transfers. However, the runtime itself has no explicit notion of
MPI and thus again all work splitting and distribution decisions are offloaded
to the user.

PHAST [11] is a heterogeneous high-level C++ library for programming
multi- and many-core architectures. It features data containers for different di-
mensionalities and provides various STL-like parallel algorithms that can operate
on said containers. Additionally, custom kernel functors are supported through
a set of macros that wrap function headers and bodies. It does not feature any
facilities for targeting distributed memory systems.

The Kokkos C++ library [4] allows thread parallel execution on manycore
devices and attempts to provide performance portability by automatically ad-
justing data layouts of multidimensional arrays to fit the access patterns of a
target device. It does not provide any facilities for distributed memory paral-
lelism (i.e., everything has to be done manually), and it is again a rather low-level
approach.

Legion [3] allows for even more flexibility by describing data accessed by
tasks in terms of logical regions, while delegating decisions about how to lay
them out in physical memory, alongside the decision of where to run tasks, to a
(potentially user-provided) mapper. Logical regions and associated tasks can be
partitioned and executed across heterogeneous clusters, with Legion taking care
of ensuring data coherence between nodes. Again, partitioning decisions as well
as the mapping of tasks to devices are delegated to the user.

While each of these approaches is well-suited to particular use cases, none of
them with the exception of Legion and PHAST were natively designed for accel-
erator computing. Crucially, they all operate on a lower level of abstraction and
thus require higher implementation effort compared to Celerity when targeting
distributed memory accelerator clusters.

3 The Celerity System

Figure 1 gives a high-level overview of the entire Celerity system. At its core, the
project extends the ease of use of the SYCL domain-specific embedded language
to distributed clusters. While execution of shared memory parallel kernels is
still handled by the SYCL runtime on each individual worker node, the Celerity

4 Peter Thoman, Philip Salzmann, Biagio Cosenza, and Thomas Fahringer

Single node parallelism through SYCL

H
os

t

Runtime C
om

pu
te

D
ev

ic
e

SYCL API

Extended Celerity C++14 API Distributed memory parallelism through Celerity

H
os

t

Runtime C
om

pu
te

D
ev

ic
e

H
os

t

Runtime C
om

pu
te

D
ev

ic
e

H
os

t

Runtime C
om

pu
te

D
ev

ic
e

Standard
Execution

Multi-pass
Execution

[...]

Fig. 1: A bird’s-eye view of the Celerity system.

runtime acts as a wrapper around each compute process, handling inter-node
communication and scheduling.

The central components making this possible are Celerity’s user-facing API,
and its multi-pass execution process at runtime. The latter allows the distributed
system to gain a shared understanding of the program being executed and au-
tomatically distribute kernel executions while ensuring that their data require-
ments are fulfilled.

3.1 The Programming Interface

1 sycl:: queue queue;
2

3 sycl::buffer <float , 2> buf_a(hst_a.data(), sycl::range <2>(512, 512));
4 sycl::buffer <float , 2> buf_b(hst_b.data(), sycl::range <2>(512, 512));
5 sycl::buffer <float , 2> buf_c(sycl::range <2>(512, 512));
6

7 queue.submit ([&](sycl:: handler& cgh) {
8 auto r_a = buf_a.get_access <acc::read >(cgh);
9 auto r_b = buf_b.get_access <acc::read >(cgh);

10 auto w_c = buf_c.get_access <acc::write >(cgh);
11 cgh.parallel_for <class my_kernel_name >(sycl::range <2>(512, 512),
12 [=](sycl::item <2> itm) {
13 w_c[itm] = r_a[itm] + r_b[itm];
14 });
15 });

Listing 1: A simple SYCL program that adds up two buffers.

Listing 1 illustrates the main portions of a simple SYCL program. Note
that SYCL-related types are marked in orange, and that we assume a prologue
of namespace sycl = cl::sycl and using acc = sycl::access::mode in all
our examples for brevity. At its core, a SYCL program consists of a queue used
to submit commands to a compute device, as well as data structures such as
buffers, and the kernels which operate on them.

Lines 3 through 5 define three two-dimensional float buffers of size 512×512,
the first two of which are being initialized using existing host data. On line
7, a so-called command group is submitted to the execution queue. Command
groups serve as wrappers for device kernel calls, allowing the specification of

Celerity: High-level C++ for Accelerator Clusters 5

data access requirements as well as the kernel code that operates on said data
in one place, tied together by the command group handler cgh. This handler
is passed as an argument into the C++ lambda expression constituting the
command group, and is used to request device accessors on lines 8 through
10. Accessors concisely express the intent of the subsequent operation (reading,
writing, or both), allowing the SYCL runtime to determine dependencies between
subsequent kernel invocations and schedule data transfers required to ensure data
coherence between the host and device.

In this particular command group, read access to buffers buf_a and buf_b

is requested over their entire range. Conversely, write access is requested for
buffer buf_c. Finally, on lines 11 through 15 the actual kernel is specified: A
simple sum of the two read-buffers is computed. Note that each kernel has to be
invoked using a template method such as parallel_for<class kernel_name>

which uses a unique tag-type to allow linking of the intermediate representation
of a kernel – which potentially is generated in a separate, implementation-defined
compilation step – to the kernel invocation in the host program.

1 celerity :: distr_queue queue;
2

3 celerity ::buffer <float , 2> buf_a(hst_a.data(),sycl::range <2>(512, 512));
4 celerity ::buffer <float , 2> buf_b(hst_b.data(),sycl::range <2>(512, 512));
5 celerity ::buffer <float , 2> buf_c(sycl::range <2>(512, 512));
6

7 queue.submit ([=](celerity :: handler& cgh) {
8 auto one_to_one = celerity :: access ::one_to_one <2>();
9 auto r_a = buf_a.get_access <acc::read >(cgh , one_to_one);

10 auto r_b = buf_b.get_access <acc::read >(cgh , one_to_one);
11 auto w_c = buf_c.get_access <acc::write >(cgh , one_to_one);
12 cgh.parallel_for <class my_kernel_name >(sycl::range <2>(512, 512),
13 [=](sycl::item <2> itm) {
14 w_c[itm] = r_a[itm] + r_b[itm];
15 });
16 });

Listing 2: The same program as shown in Listing 1, now using the Celerity API.

Listing 2 shows the Celerity version of the program previously seen in List-
ing 1. The first observation of note is that the overall structure of the two pro-
grams is quite similar. While some objects now live under the celerity names-
pace, we still have buffers, a queue and a command group containing buffer
accessors as well as a kernel invocation. In fact, whenever possible, the original
objects from the sycl namespace are used, allowing for code to be migrated to
Celerity with minimal effort. Since unlike SYCL, Celerity may call command
groups multiple times during a user program’s execution – as will be discussed
in Section 3.2 – it is recommended to capture all required buffers by value rather
than reference, as can be seen on line 7.

Notice the lack of typical indicators of a distributed memory parallel pro-
gram, such as the notion of a local rank and the total number of nodes running.
Nonetheless, given this program, the Celerity runtime is able to distribute the
workload associated with kernel my_kernel_name to any number of workers dy-
namically at runtime.

6 Peter Thoman, Philip Salzmann, Biagio Cosenza, and Thomas Fahringer

This is made possible in large parts by one of Celerity’s most significant
API additions: So-called range mappers specify the data access behavior of each
kernel and are provided as the final parameter to Celerity’s get_access() calls
on lines 9 through 11.

Specifying Data Requirements When Celerity workers execute disjunct parts of
the same logical kernel in parallel, they typically each require different portions
of some input data. Distributing full buffers to each node and compute device
is theoretically valid, but clearly untenable in terms of performance due to po-
tentially redundant data transfers. Furthermore, a different part of the result is
produced on each worker, a fact that needs to be taken into consideration when
deciding on how to use their output in subsequent computations.

What is required is a flexible and minimally invasive method of specifying
exactly what data requirements a kernel has, in a way that is independent of
data distribution and work scheduling. In Celerity this is accomplished by range
mappers, which are arbitrary functors with the following signature:

(celerity::chunk<KD>) -> celerity::subrange<BD>

Here, a celerity::chunk<KD> specifies an N-dimensional chunk of a kernel,
containing an offset, a range, and a global size. The offset and range of a chunk
depend on how the Celerity runtime decides to distribute a kernel across worker
nodes, i.e., each chunk represents a portion of the execution of a kernel, each
assigned to a particular worker node. A chunk is then mapped to a celerity::

subrange<BD>, which specifies the offset and range of a data buffer the kernel
chunk will operate on. KD and BD can differ: a 2D kernel may for example access
data stored in a 1D buffer.

1 queue.submit ([=](celerity :: handler& cgh) {
2 auto i_r = input.get_access <acc::read >(cgh , celerity :: access ::

one_to_one <2>());
3 auto o_w = output.get_access <acc::write >(cgh ,
4 [](celerity ::chunk <2> chnk) -> celerity ::subrange <2> {
5 return { { chnk.offset [1], chnk.offset [0] },
6 { chnk.range[1], chnk.range [0] } };
7 });
8 cgh.parallel_for <class transpose >(sycl::range <2>(128, 256),
9 [=](sycl::item <2> itm) {

10 auto idx = sycl::id <2>(itm[1], itm [0]);
11 o_w[idx] = i_r[itm];
12 });
13 });

Listing 3: Range mapper for computing a matrix transpose.

Listing 3 shows how a range mapper can be used to specify data requirements
for a simple matrix transpose. Implemented on lines 4 through 7, this range
mapper specifies that for any input matrix of size n ×m, the kernel will write
to an output matrix of size m× n. Crucially, it also specifies that for any given
submatrix of size p× q at location (i, j) with i + p ≤ n, j + q ≤ m, it will write
to the corresponding output submatrix of size q × p at location (j, i).

Celerity: High-level C++ for Accelerator Clusters 7

Note that the range mapper merely acts as a contract of how data is going to
be accessed, and does not affect the actual kernel in any way. The index-reversal
and subsequent assignment on lines 10 and 11 is where the actual transpose
is computed. Given this range mapper, regardless of the number of workers
executing the kernel (i.e., the number of chunks the kernel is split into), it is
always clear where which parts of the resulting matrix are computed. Likewise,
the Celerity runtime also knows exactly what parts of the input matrix each
worker node requires in order to produce the transpose. While in Listing 3 a
matrix of size 128×256 is transposed to a 256×128 matrix, notice how this size
is not relevant to the range mapper definition itself. This allows both users and
library authors to write mappers in a generic and reusable way.

Built-in Range Mappers The Celerity API provides several built-in range map-
pers for common data access patterns. One that is very frequently used, celerity
::access::one_to_one, can be seen in both Listing 2 and Listing 3. This range
mapper specifies that a kernel, for every individual work item, will access a buffer
only at that same global index. In Listing 3 this means that to compute the “re-
sult” for work item (i, j), the kernel will access the input matrix at index (i, j)
as well – while writing to the output matrix at index (j, i), as specified by the
custom mapper described previously.

(a) slice<KD> (b) neighborhood<KD> (c) fixed<KD, BD>

Fig. 2: Example inputs and outputs for three built-in range mappers, in this case
applied to 2-dimensional kernels and buffers.

Figure 2 illustrates three additional range mappers currently provided by the
Celerity API. Thick lines indicate the input chunk, colored areas the associated
output subrange (i.e., the accessed portion of a buffer). Each color corresponds
to a different configuration of a range mapper. The slice range mapper allows
extending the range of a chunk along one dimension indefinitely, thus selecting
an entire slice of a buffer in that dimension. A common use case for this is
matrix multiplication. The neighborhood range mapper allows selecting a given
border around a chunk, a pattern that is commonly encountered in stencil codes.

8 Peter Thoman, Philip Salzmann, Biagio Cosenza, and Thomas Fahringer

Finally, the fixed range mapper always returns a given, fixed subrange of a
buffer, regardless of the input chunk. This can be useful when each worker needs
to read the same input buffer, e.g. a mask when applying a discrete convolution.

3.2 The Prototype Runtime System

The Celerity runtime system is a multi-threaded application built on top of
SYCL and MPI that runs in concert with a user-defined program in a single pro-
gram multiple data (SPMD) fashion. It uses a master/worker execution model,
where the master node is responsible for scheduling all the distributed work.
Worker nodes encapsulate the available accelerator hardware (i.e., one worker
is spawned per accelerator). They asynchronously receive commands from the
master node and execute them as soon as possible.

Commands are lightweight asynchronous operations such as the execution of
a certain chunk of a kernel, or initiating a data transfer with another worker.
The master node generates commands as part of a graph and includes depen-
dency information within the directives sent to each worker. This allows workers
to execute commands as soon as all of their dependencies are satisfied. The re-
sources that they operate on, i.e. kernels and buffers, are identified by unique
numerical IDs within the lightweight command data structure. To enable this,
each worker, as well as the master node, has an implicit shared understanding
of what any particular ID refers to. This is possible because each Celerity pro-
cess executes the exact same user code, deterministically assigning IDs to newly
created objects.

To allow for Celerity to retain the familiar SYCL syntax for specifying kernels
using command groups, without performing lots of duplicated computational
work on each worker node, certain parts of a Celerity program are executed
twice, in a process we call multi-pass execution.

In the pre-pass, command groups are executed solely to collect their defining
properties, such as buffer accesses and their range mappers, as well as the global
size of a kernel and the kernel function itself. Using this information, the master
node constructs a task graph that respects consumer/producer relationships and
other data dependencies between subsequent kernel executions. From this, it
then generates the more fine grained command graph which contains commands
assigned to particular workers. Once a kernel execution command is received
by a worker, it then executes the corresponding command group a second time.
During this live-pass, the actual computation on the device takes place. However,
instead of using the global size provided by the user, it is transparently executed
on the chunk assigned by the master node.

While the pre-pass is performed immediately upon first encounter of a com-
mand group within a user program, the Celerity runtime needs to be able to
defer the live-pass to a later point in time in order to schedule additional work
ahead. If that were not the case, each command group would act as an implicit
global barrier, which is highly undesirable. This in turn means that Celerity has
to retain command groups internally to be able to execute the live-pass at a
later point in time, independently of the user program’s execution flow. As the

Celerity: High-level C++ for Accelerator Clusters 9

combination of C++11 lambda closures and this deferred execution can cause
hard to diagnose lifetime bugs, we recommend to only capture parameters by
value. While this is currently being enforced through static assertions, more so-
phisticated diagnostics enabled by compiler extensions might be explored in the
future.

It is crucial to note that pre-pass and live-pass execution, as well as task and
command graph generation all occur asynchronously – and, in fact, at the same
time in any non-trivial program. Most importantly, this means that worker nodes
can execute their local command graphs, performing computations and peer-
to-peer data transfers, completely independently of the main task generation
process. In practice, this system ensures that Celerity imposes no bandwidth
overhead compared to a fully decentralized approach, and no latency overhead
outside of a startup phase during which the initial commands are generated.

4 Evaluation

This section evaluates Celerity as a framework for writing distributed memory
accelerator applications. To this end, we compare the Celerity implementation
of three programs with more traditional implementations.

The example programs highlighted in this chapter are: i) MatMul, a sequence
of dense matrix-matrix multiplications, ii) Pendulum, which simulates the be-
havior of a pendulum swinging across a board with an arrangement of magnets,
and iii) WaveSim, a simulation of the 2D wave equation. For each of these pro-
grams, we compare a Celerity version with a MPI+SYCL version representing
the current state of the art. For MatMul, we additionally consider a traditional
MPI+OpenCL variant, to verify that SYCL performs equally to this baseline.

4.1 Programmability

To estimate and compare the differences of each implementation from a pro-
grammer’s point of view, we present two different metrics. First, the widely
employed cyclomatic complexity [8] measures code complexity in terms of the
number of linearly independent paths of execution a program could take. It is
computed using the pmccabe command-line utility, which is available for many
Linux distributions. As a somewhat simpler – but perhaps more immediately
apprehensible – metric, the number of non-comment lines of code (NLOC) is
provided. Note that all non-essential code, such as selection of compute devices,
instrumentation, and result verification is excluded from these metrics. The for-
mer two need to be performed manually for the classical implementations while
they are included in Celerity, and the latter is the same across all versions.

Figure 3 summarizes the programmability metrics for all three applications.
Note that across all programs and both metrics, there is a very significant de-
crease in implementation complexity of about factor 2 going from MPI+SYCL
to Celerity. This is primarily caused by eliminating the need for most traditional
trappings associated with distributed memory programming, including manual

10 Peter Thoman, Philip Salzmann, Biagio Cosenza, and Thomas Fahringer

MatMul Pendulum WaveSim

10

20

30

9

6

1616

13

29

20

C
y
cl

o
m

a
ti

c
C

o
m

p
le

x
it

y
Celerity MPI+SYCL MPI+OpenCL

MatMul Pendulum WaveSim

50

100

150

200

66
51

96

127

88

190

149

N
L

O
C

Fig. 3: Comparison of programmability metrics.

work and data distribution as well as data synchronization. The smallest differ-
ence is observed in NLOC for Pendulum, which is due to the fact that there is
no data redistribution required in this algorithm outside of the initial conditions
and final aggregation.

When considering the MPI+OpenCL version for MatMul, we see that there
is a further increase in implementation effort associated with the lower-level
OpenCL API compared to the high-level SYCL, although a less significant one
than what is required for distributed memory.

4.2 Performance

While Section 4.1 demonstrates the significant programmability advantages con-
ferred by Celerity compared to state-of-the-art methods, these advantages would
be relatively meaningless if they came at a large general loss in performance
potential. Therefore, although the current Celerity runtime implementation is
still only a prototype, we provide some initial benchmarks in this section which
demonstrate its performance.

Host: AMD Ryzen Threadripper 2920X 12-Core, 32 GB DDR4 RAM
GPUs: 4x Nvidia RTX 2070
Interconnect: 10 Gigabit Ethernet
Software: Ubuntu 18.04; OpenMPI 4.0.0; GPU driver 410.79; hipSYCL 0.7.9

Table 1: Per-node specification for the benchmarking system.

All benchmarks were executed on a small cluster comprised of 8 GPUs, situ-
ated in two distinct but otherwise identical machines with 4 GPUs each. Thus,
all runs using 4 GPUs or less are on a single machine, while runs with 8 GPUs

Celerity: High-level C++ for Accelerator Clusters 11

utilize both. Table 1 summarizes the hardware of each machine, as well as the
software stack used for this evaluation. For each benchmark, the workload is
statically distributed in a uniform fashion, i.e., no load-balancing strategies are
employed. Figure 4 illustrates the speedup achieved by each application scaling
from 1 to 8 GPUs (corresponding to 2304 to 18432 CUDA cores). The results
presented are based on the median of 5 benchmark runs for each configuration.

Before discussing the individual results, note that we do not include the
MPI+OpenCL version of MatMul in this chart. Its performance is exactly equiv-
alent to the MPI+SYCL version and is therefore omitted for clarity.

1 2 4 8

1

2

4

8

MatMul

S
p

ee
d
u
p

Celerity MPI+SYCL

1 2 4 8

1

2

4

8

Pendulum

Number of GPUs

1 2 4 8

1

2

4

8

WaveSim

Fig. 4: Speedup for 1 to 8 GPUs of Celerity compared to manual MPI+SYCL.

Evidently, Celerity offers performance comparable to the manual distributed
memory accelerator implementation in all three applications benchmarked. This
is most apparent in Pendulum, which shows the exact same speedup for both
variants. This is a result of the absence of intermediate data transfers resulting
in a relative lack of network transmission impact on the overall execution time.

For MatMul, Celerity shows equivalent behavior up to 4 GPUs, but slightly
worse scaling to 8 GPUs. We have examined this drop in efficiency and deter-
mined that it is due to the manual MPI version leveraging collective communi-
cation for data transfers in between individual matrix multiplications, while the
Celerity prototype currently performs point-to-point communication. This is a
quality-of-implementation issue rather than an inherent feature of our approach,
and we intend to improve on this behavior in future work.

Finally, WaveSim actually demonstrates better scaling from 4 to 8 GPUs in
its Celerity variant than it does in MPI+SYCL. This stencil-like code is relatively
latency-sensitive, as ghost cells need to be exchanged after every time step. The
Celerity version benefits from the fact that all (automatic) data distribution
is inherently implemented asynchronously in our runtime system. While the
MPI+SYCL version could also be made entirely asynchronous, likely resulting in
similar performance, this would further increase its implementation complexity
in the metrics discussed in Section 4.1.

12 Peter Thoman, Philip Salzmann, Biagio Cosenza, and Thomas Fahringer

5 Conclusion

In this work we have introduced the Celerity API for programming distributed
memory accelerator clusters. It builds on the SYCL industry standard, and al-
lows extending existing single-GPU programs to GPU clusters with a minimal
set of changes, while shielding the user from much of the complexity associated
with work and data distribution on clusters.

This is achieved by i) a concise API extension focusing on flexible, reusable
range mapper functors, ii) a multi-pass runtime execution model which builds
an implicit, shared understanding of the data and work primitives – buffers and
kernel invocations – involved in the computation at runtime, and iii) a fully
asynchronous execution environment implementation for this model.

In concrete terms, programmability metrics show significant ease of imple-
mentation advantages for our approach compared to state-of-the-art MPI+SYCL
combinations, with improvements around factor 2 in both cyclomatic complexity
as well as lines of code. This advantage is even more pronounced when comparing
against a more traditional MPI+OpenCL implementation version.

Crucially, these programmability advances do not come at a significant per-
formance overhead. Execution times for the Celerity implementation versions are
comparable to their respective manual distributed memory accelerator versions
in all programs tested, with minor advantages and disadvantages in individual
benchmarks.

The approach introduced in Celerity enables a broad spectrum of future re-
search. On the API level, even more concise or domain-specific abstractions can
be introduced to further improve ease of use for domain scientists. Independently
– and without requiring any change to the input programs – the efficiency of
the runtime system can be increased, by e.g. introducing command graph op-
timizations which gather individual transfers into collective operations, or by
improving scheduling for kernels with non-uniform workloads.

Acknowledgments

This research has been partially funded by the FWF (I 3388) and DFG (CO 1544/1-
1, project number 360291326) as part of the CELERITY project.

References

1. Agullo, E., Aumage, O., Faverge, M., Furmento, N., Pruvost, F., Sergent, M.,
Thibault, S.P.: Achieving High Performance on Supercomputers with a Sequential
Task-based Programming Model. IEEE Transactions on Parallel and Distributed
Systems (2017)

2. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.A.: StarPU: a unified plat-
form for task scheduling on heterogeneous multicore architectures. Concurrency
and Computation: Practice and Experience 23(2), 187–198 (2011)

Celerity: High-level C++ for Accelerator Clusters 13

3. Bauer, M., Treichler, S., Slaugther, E., Aiken, A.: Legion: Expressing locality and
independence with logical regions. In: 2012 International Conference for High Per-
formance Computing, Networking, Storage and Analysis (SC). IEEE (2012)

4. Carter Edwards, H., Trott, C.R., Sunderland, D.: Kokkos: Enabling manycore per-
formance portability through polymorphic memory access patterns. Journal of Par-
allel and Distributed Computing 74(12), 3202–3216 (2014)

5. Courtland, R.: Gordon Moore: The Man Whose Name Means Progress (2015),
https://spectrum.ieee.org/computing/hardware/gordon-moore-the-man-whose-
name-means-progress

6. Duran, A., Ayguadé, E., Badia, R.M., Labarta, J., Martinell, L., Martorell, X.,
Planas, J.: OmpSs: a proposal for programming heterogeneous multi-core architec-
tures. Parallel Processing Letters 21(02), 173–193 (2011)

7. Kale, L.V., Krishnan, S.: CHARM++: a portable concurrent object oriented sys-
tem based on C++. In: Proceedings of the eighth annual conference on Object-
oriented programming systems, languages, and applications. vol. 10, pp. 91–108
(1993)

8. McCabe, T.J.: A Complexity Measure. IEEE Transactions on Software Engineering
SE-2(4), 308–320 (1976)

9. Meade, A., Deeptimahanti, D.K., Buckley, J., Collins, J.J.: An empirical study of
data decomposition for software parallelization. Journal of Systems and Software
125, 401–416 (2017)

10. Message Passing Interface Forum: MPI: A Message-Passing Interface Standard,
Version 3.1 (2015), https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf

11. Peccerillo, B., Bartolini, S.: PHAST Library — Enabling Single-Source and High
Performance Code for GPUs and Multi-cores. In: Smari, W.W., Simulation,
I.C.o.H.P.C.&. (eds.) 2017 International Conference on High Performance Com-
puting & Simulation. pp. 715–718. IEEE, Piscataway, NJ (2017)

12. The Khronos Group: The OpenCL Specification, Version 1.2 Revision 19 (2012),
https://www.khronos.org/registry/OpenCL/specs/opencl-1.2.pdf

13. The Khronos Group: SYCL Specification, Version 1.2.1 Revision 3 (2018),
https://www.khronos.org/registry/SYCL/specs/sycl-1.2.1.pdf

14. Thoman, P., Dichev, K., Heller, T., Iakymchuk, R., Aguilar, X., Hasanov, K.,
Gschwandtner, P., Lemarinier, P., Markidis, S., Jordan, H., et al.: A taxonomy
of task-based parallel programming technologies for high-performance computing.
The Journal of Supercomputing 74(4), 1422–1434 (2018)

