
Celerity: How (Well) Does the SYCL API
Translate to Distributed Clusters?

Philip Salzmann
philip.salzmann@uibk.ac.at
University of Innsbruck

Austria

Fabian Knorr
fabian.knorr@uibk.ac.at
University of Innsbruck

Austria

Peter Thoman
peter.thoman@uibk.ac.at
University of Innsbruck

Austria

Biagio Cosenza
bcosenza@unisa.it

University of Salerno
Italy

CCS CONCEPTS
• Software and its engineering → Distributed programming lan-
guages; Runtime environments; • Computing methodologies
→ Parallel programming languages.

KEYWORDS
distributed memory clusters, cluster computing, MPI, SYCL

ACM Reference Format:
Philip Salzmann, Fabian Knorr, Peter Thoman, and Biagio Cosenza. 2022.
Celerity: How (Well) Does the SYCL API Translate to Distributed Clusters?.
In International Workshop on OpenCL (IWOCL’22), May 10–12, 2022, Bristol,
United Kingdom, United Kingdom. ACM, New York, NY, USA, 2 pages. https:
//doi.org/10.1145/3529538.3530004

1 INTRODUCTION
As the SYCL[4] ecosystem matures, adoption across both research
and industry projects steadily increases[8]. By offering a modern,
vendor-agnostic way of programming a wide array of accelerator
hardware, SYCL has the potential to become an important player
in high-performance computing (HPC) as well. In fact, existing
pre-exascale and upcoming exascale machines already officially
support SYCL or even recommend it as one of their preferred pro-
grammingmodels[3][1]. As such, the question of howwell the SYCL
programming model translates to distributed computing becomes
more prevalent. While traditional approaches such as combining
SYCL with the Message Passing Interface (MPI)[2] will undoubt-
edly remain relevant for years to come, a more forward-thinking
approach may be to try and extend SYCL’s ease of use for single
node systems to a distributed cluster. The first project to explore
this in greater detail is Celerity[5], a distributed runtime system
and API that heavily leans on SYCL in both its API design as well
as its underlying execution engine. The validity of its design is
currently being evaluated through the porting of two industry use
cases ([6],[7]) for large scale distributed execution as part of the LIG-
ATE project. While Celerity is neither a true subset nor superset of

IWOCL’22, May 10–12, 2022, Bristol, United Kingdom, United Kingdom
© 2022 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in International
Workshop on OpenCL (IWOCL’22), May 10–12, 2022, Bristol, United Kingdom, United
Kingdom, https://doi.org/10.1145/3529538.3530004.

the SYCL API, experienced SYCL users will immediately recognize
the familiar structure of its API.

In this talk, we will review the SYCL API from the perspective
of Celerity and distributed memory programming in general. We
will highlight challenges encountered and opportunities for future
improvement of the SYCL API.

2 OVERVIEW OF CELERITY
We will begin our presentation by giving an overview of the Celer-
ity programming model, highlighting its similarities to SYCL and
introducing core additions to the API. We will showcase how a
typical Celerity program is structured, and how an existing SYCL
application can be converted to Celerity. Additionally, we will give a
brief overview of how Celerity itself uses SYCL internally to power
its distributed execution semantics.

3 SYCL IN DISTRIBUTED ENVIRONMENTS
The main portion of this presentation will concern itself with in-
vestigating important features of SYCL and how well they translate
to distributed clusters. We will begin by examining core features
such as the high-level data-driven APIs of queues, buffers, com-
mand groups and accessors in a distributed context. Next, we will
highlight newer additions to SYCL such as host tasks and reduc-
tions. Finally, we will take a look at APIs that may be considered
problematic from a distributed memory perspective, such as unified
shared memory (USM).

4 OUTLOOK ON THE FUTURE OF SYCL
We will conclude our presentation with an outlook on what future
versions of SYCL could bring to the table to further improve com-
patibility with distributed memory clusters. We will review HPC
use cases that may not yet be fully covered by SYCL and present
several potential improvements that would enhance the experience
for both us as library developers as well as users of the traditional
MPI + SYCL approach.

ACKNOWLEDGMENTS
This project has received funding from the European High Perfor-
mance Computing Joint Undertaking (JU) under grant agreement
No 956137 as well from the Austrian Research Promotion Agency
under grant agreement No 879201.

https://doi.org/10.1145/3529538.3530004
https://doi.org/10.1145/3529538.3530004
https://doi.org/10.1145/3529538.3530004


IWOCL’22, May 10–12, 2022, Bristol, United Kingdom, United Kingdom Philip Salzmann, Fabian Knorr, Peter Thoman, and Biagio Cosenza

REFERENCES
[1] ANL. 2021. SYCL and DPC++ for Aurora. https://www.alcf.anl.gov/support-

center/aurora/sycl-and-dpc-aurora
[2] Message Passing Interface Forum. 2021. MPI: A Message-Passing Interface Standard,

Version 4.0. https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
[3] NERSC. 2021. Transitioning Applications to Perlmutter. https://docs.nersc.gov/

performance/readiness
[4] The Khronos SYCL Working Group. 2021. SYCL 2020 Specification (revision 4).

https://www.khronos.org/registry/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf
[5] Peter Thoman, Philip Salzmann, Biagio Cosenza, and Thomas Fahringer. 2019.

Celerity: High-Level C++ for Accelerator Clusters. In Euro-Par 2019: Parallel

Processing. Vol. 11725. Springer International Publishing, 291–303. https://doi.org/
10.1007/978-3-030-29400-7_21 Series Title: Lecture Notes in Computer Science.

[6] Peter Thoman, Markus Wippler, Robert Hranitzky, Philipp Gschwandtner, and
Thomas Fahringer. 2021. Multi-GPU room response simulation with hardware
raytracing. Concurrency and Computation: Practice and Experience (2021), e6663.

[7] Emanuele Vitali, Davide Gadioli, Gianluca Palermo, Andrea Beccari, and Cristina
Silvano. 2018. Accelerating a geometric approach to molecular docking with
OpenACC. In Proceedings of the 6th International Workshop on Parallelism in
Bioinformatics. 45–51.

[8] Michael Wong. 2021. SYCL State of the Union Keynote. Presented at
IWOCL’21. https://www.iwocl.org/wp-content/uploads/k04-iwocl-syclcon-2021-
wong-slides.pdf

Preprint — do not distribute.

https://www.alcf.anl.gov/support-center/aurora/sycl-and-dpc-aurora
https://www.alcf.anl.gov/support-center/aurora/sycl-and-dpc-aurora
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://docs.nersc.gov/performance/readiness
https://docs.nersc.gov/performance/readiness
https://www.khronos.org/registry/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf
https://doi.org/10.1007/978-3-030-29400-7_21
https://doi.org/10.1007/978-3-030-29400-7_21
https://www.iwocl.org/wp-content/uploads/k04-iwocl-syclcon-2021-wong-slides.pdf
https://www.iwocl.org/wp-content/uploads/k04-iwocl-syclcon-2021-wong-slides.pdf

	1 Introduction
	2 Overview of Celerity
	3 SYCL in Distributed Environments
	4 Outlook on The Future of SYCL
	Acknowledgments
	References

