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Abstract—While domain-specific HPC software packages con-
tinue to thrive and are vital to many scientific communities,
a general purpose high-productivity GPU cluster programming
model that facilitates experimentation for non-experts remains
elusive.

We demonstrate how Celerity, a high-level C++ programming
model for distributed accelerator computing based on the open
SYCL standard, allows for the quick development of – and exper-
imentation with – distributed applications. To achieve scalability
on large machines, we replace Celerity’s existing master/worker
scheduling model with a fully distributed scheme that reduces
the worst-case scheduling complexity from quadratic to linear
while maintaining the existing programming interface. We then
show how this declarative, data-flow based API paired with a
point-to-point communication model with eager data pushing can
effectively expose and leverage opportunities for latency hiding
and computation/communication overlapping with minimal or
no manual guidance. We demonstrate how Celerity exhibits very
good scalability on multiple benchmarks from several scientific
domains and up to 128 GPUs.

Index Terms—Accelerator Computing, GPGPU, Cluster Com-
puting, Runtime System, SYCL

I. INTRODUCTION

High performance computing (HPC) is a complicated en-

deavor: Memory hierarchies, heterogeneous architectures, net-

work topologies and work and data distribution introduce

levels of complexity that are hard to manage even for experts.

Yet, many modern fields of research either heavily depend

on, or are outright built upon the ability to perform number

crunching at extreme scales.

Development of new software for HPC is typically left to

the select few, while cutting edge research is often performed

using well-known domain specific software packages, such as

GROMACS [1] for biomolecular simulations.

Those that are not lucky enough to find their domain having

a well-maintained and highly optimized software package

are frequently forced to use legacy application codes which

have been passed down through generations of researchers.

These codes, after years of organic growth, are often difficult

to extend and experiment with when trying to target novel

hardware.

These problems are only compounded as we are on the

verge of entering the “Exascale Era”, where even larger cluster

configurations consisting of fat nodes containing multiple

accelerators are likely to further complicate programmability.

Today’s de-facto standard approach to developing dis-

tributed HPC applications is still “MPI + X”, where the

Message Passing Interface (MPI) [2] is combined with a

data parallel programming model such as OpenMP, CUDA or

OpenCL. While this approach is certainly viable and can be

used to produce programs achieving peak performance, it can

be likened to how assembly is still used nowadays: Once all

tradeoffs and performance characteristics are known, and when

targeting specific hardware systems for execution, with a high

degree of expertise, peak performance can be achieved. How-

ever, as a consequence, the experimentation phase becomes

increasingly inflexible over time, as for example changing

the distribution of work and data in a hand-written MPI +

X application can be extremely labor intensive.

Meanwhile, there has been no shortage of research projects

and software frameworks to facilitate distributed accelerator

computing. We can roughly group them into three categories:

Several early works have attempted to bring OpenCL or

CUDA to distributed environments by abstracting remote de-

vices into a local-looking API [3], [4], [5]. While simplifying

the interaction with remote devices across clusters, projects

of this first category typically still require the manual assign-

ment of work to remote devices, ultimately leaving complex

decisions about scheduling and data distribution to the user.

The second category comprises full-blown runtime systems,

which typically introduce a broad API and custom terminol-

ogy, as well as enabling ecosystems of tooling and derived

software projects. These projects offer great flexibility and

impressive performance results, at the cost of having to adopt

a new API, and rely on the sustainability of their associated

development ecosystems.

A notable example is StarPU [6], an extensible runtime

system for programming heterogeneous systems. It offers a

wide array of scheduling approaches, from simple FCFS poli-

cies, over work-stealing and heuristics based on HEFT [7], to

dedicated schedulers for dense linear algebra on heterogeneous

architectures [8], [9]. Nevertheless, StarPU’s C API is rather

low level and requires the explicit handling of data distribution

when executing in cluster environments.



Legion [10] is a runtime system designed to make efficient

use of heterogeneous hardware through highly configurable

and efficient work splitting and mapping to the available

resources. Its C++API is intricate and precise, with the explicit

intent of putting performance first, before any programmability

considerations, making it unsuitable for non-expert users.

Another notable entry in the second category is PaR-

SEC [11], which uses a custom graph representation language

called JDF to describe the dataflow of an application [12].

Either automatically generated through a custom compilation

step, or written by hand, this representation then enables a

fully decentralized scheduling model and automatic handling

of data dependencies across a distributed system. The initial

distribution of data needs to be provided by the user.

The Kokkos Programming Model [13] is a popular library-

based framework for programming different CPU and GPU

architectures. It promises performance portability through a

set of abstractions around both parallel execution and data

structures. While not aimed at distributed computing directly,

the experimental remote spaces extension adds multi-node

capabilities to the project.

The third category comprises those projects that extend ex-

isting programming languages, for example the pragma-based

OmpSs [14], or introduce entirely new languages altogether,

such as Chapel [15] or Regent [16]. While these projects

can greatly simplify working with parallel and distributed

systems, by building the appropriate semantics directly into a

language, the often limited tooling support (IDEs, debugging)

can hamper their wide-spread adoption.

A common theme across many of the aforementioned works

is that they rely on dataflow information to infer dependency

relationships between tasks. Dataflow graphs have proven to

be a good abstraction for distributed computing at scale, as

demonstrated for example by TensorFlow [17] for machine

learning applications. Here, general purpose programming

models with user-defined kernels face the additional challenge

of determining how data flows through the application. While

coarse-grained dataflow information can be obtained by means

of replacing raw pointer arithmetic with accessor constructs,

for example as is done in SYCL [18], enabling efficient

execution in distributed memory contexts requires more fine-

grained (i.e., on the level of a single data element) information.

Some works have explored the possibility of inferring fine-

grained data access patterns automatically using compiler-

based techniques [19], [20], [21]. Challenges faced by these

approaches include that detectable patterns are constrained to

certain affine functions, while keeping a compiler component

up to date with evolving language standards is a maintenance

burden that is difficult to sustain. A pure library-level approach

is to rely on users to augment tasks with data access annota-

tions [22], [23], which is also the approach taken by this work

(which will be discussed in Section II-B).

In order to fuel future research and innovation at scale,

ways to quickly develop distributed applications and efficiently

experiment with different work and data distribution patterns,

in a way that is manageable by non-experts, are required. We
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Fig. 1. Dry run comparison of master/worker versus distributed scheduling
model performance for up to 128 GPUs. Reported times are for 100 simulated
time steps of a task with an allgather in between each iteration.

contrast the aforementioned works with Celerity, a high-level

programming model focused on programmability, ease of use

and experimentation. Celerity’s approach differs to existing

solutions by the following main points:

1) Celerity is designed for execution on distributed memory

GPU clusters from the ground up. No special integration

with a communications layer such as MPI or an acceler-

ator API such as CUDA is required.

2) It compiles as plain C++, no language extensions are

introduced, facilitating the use of existing tools.

3) It is designed as a thin layer on top of SYCL [18], an

industry standard for accelerator programming, allowing

for existing SYCL applications to be easily converted to

Celerity — and back.

The Celerity API was first proposed by Thoman et al. in [24].

Thereafter, [25] introduced a proof-of-concept implementation

focusing on the programmability benefits of Celerity compared

to plain MPI + X. While its API surface has remained

relatively stable ever since, apart from adopting changes

introduced in SYCL 2020 [18], the runtime implementation

has undergone several iterations before settling on the current

design.

None of this prior work focused on the design and im-

plementation of the Celerity runtime system, and as such we

will give a comprehensive overview in Section III. The most

significant change to date is the focus of Section IV: The initial

prototype implementation used in [25] relied on a master–

worker scheduling model, where a centralized node – the

master node – is responsible for the generation of commands
for each worker. While this approach has the advantage of

complete knowledge about the distributed system state within a

single node, it faces difficulties when scaling to larger numbers

of GPUs.

In this work, we propose an alternative, fully distributed

scheduling model. Its latency advantage can be seen from the

experiment in Fig. 1, where we schedule 100 iterations of a



simple task on up to 128 GPUs. In order to focus solely on

the scheduler’s performance, no actual kernel launches or data

transfers take place (we refer to this as a dry run). Between

each iteration, the task requires an allgather step, that is,

data written by each GPU in one time step will be read by

every GPU in the next times step. This represents a worst-case

scheduling scenario for the centralized model, as for N nodes,

N2 transfers need to be issued. The resulting numbers confirm

this, with scheduling for 128 GPUs requiring an excessive 100

milliseconds per iteration. The distributed model on the other

hand, which will be explained in detail in Section IV, scales

linearly with the number of GPUs.

We summarize the contributions of this article as follows:

• A detailed description of the Celerity runtime system’s

current design.

• Presenting a novel, fully distributed scheduling scheme

replacing the existing master/worker model.

• Introduction of a new task hints API that enables users

to guide Celerity’s task splitting behavior.

• Enabling multi-GPU support for individual workers.

• Experimental evaluation of the runtime system perfor-

mance for application codes on up to 128 GPUs.

II. THE CELERITY PROGRAMMING MODEL

The Celerity API and runtime system is a modern C++
framework for distributed GPU computing [25]. Built on the

open SYCL standard [18] published by the Khronos Group,

it aims to bring SYCL to clusters of GPUs with a minimal

set of API extensions. While Celerity inherits the ability to

support a variety of accelerator devices including FPGAs and

ASICs from SYCL, it is currently focused on a GPU-based

accelerator use case, which is also the most common scenario

in high performance computing.

Before we introduce the Celerity API, let us briefly re-

iterate the most important concepts of the SYCL program-

ming model: A typical SYCL program is centered around

buffers of data and kernels which manipulate them. Kernels

are expressed as plain C++ functors within the host source

code, making SYCL a single-source programming model.

An implementation-defined compilation step is then used to

extract the kernel code and translate it into a representation

that can be understood by the target hardware platform. As is

common in modern accelerator programming models, kernel

functions are not called directly within the context of the

host application. Instead, kernels are wrapped in so-called

command groups and submitted to a queue, which is then

processed asynchronously with respect to the host process.

Events can be used to query a kernel’s execution status and

wait for its completion.

One aspect of SYCL crucial to Celerity’s design is that

data buffers are more than simple pointers returned by a

malloc-esque API, as for example in CUDA: they are an

evolution of OpenCL’s memory objects, opaque handles to

memory that cannot be manipulated directly. Instead, buffers

are accessed through so-called accessors, which are declared

within a command group before a kernel is launched and

provided to the kernel as arguments (either through implicit

lambda captures, or explicitly)1.

Upon creating buffer accessors, the user additionally has to

declare how a buffer will be accessed, i.e., for reading, writing

or both. Not only does this enable certain optimizations, it also

allows the SYCL runtime to construct a task graph based on

the dataflow of buffers through kernels: If a kernel reads from a

buffer that is written by an earlier kernel, it implicitly depends

on said earlier kernel to have finished its execution. Celerity

uses and builds upon this mechanism to allow for tasks to be

executed across a distributed cluster of nodes, while ensuring

data coherence through implicit asynchronous transfers.

From a high-level perspective, the Celerity API design can

be considered a natural evolution and generalization of an

overarching trend in languages and APIs for highly parallel

architectures. Several successful modern programming models

such as CUDA, OpenCL and SYCL abstract the concept of a

hardware thread in a way that lets users express their programs

in terms of linear looking kernels, which are invoked over

an N-dimensional range of work items. Celerity attempts to

abstract the concept of distributed computation in a similar

way: kernels are written in the same way as in SYCL, however

they can be executed across multiple devices, with all resulting

data transfers handled completely transparently to the user.

The Celerity API is thus designed around three levels of

parallelism:

1) Task-parallelism at the outer level: Tasks without mutual

dependencies can be executed concurrently.

2) Per-worker parallelism: The execution of a single task

can potentially be split across many different workers.

3) Data-parallelism within a task.

As previously mentioned, the Celerity API tries to stay as

close as possible to SYCL. The most notable and fundamental

extension to SYCL introduced by Celerity is the concept of

range mappers, functions that provide additional information

about how buffers are being accessed from within a kernel.

From user-provided range mappers, the Celerity runtime sys-

tem can infer, which parts of a buffer will be read, and which

ones will be written – at arbitrary granularity. This information

is in turn used to make scheduling decisions, and to ensure

that all data dependencies are satisfied before a particular task

is executed. Listing 1 shows an example of a simple matrix

addition implemented in Celerity.

A. Tasks

As mentioned previously, to transparently enable asyn-

chronous execution, all compute operations in a Celer-

ity program are invoked by means of a queue object.

In the second line of Listing 1, this queue of type

celerity::distr_queue is created. Subsequently, three

two-dimensional buffer objects are created, two of which are

1SYCL has recently introduced additional lower-level APIs for pointer-
based memory management which do not convey dependency information to
the runtime and are thus omitted from Celerity.



Listing 1 Computing a matrix addition in Celerity.

1 using namespace celerity;
2 distr_queue queue;
3

4 auto rg = range<2>(512, 512);
5 buffer<float, 2> buf_a(hst_a.data(), rg);
6 buffer<float, 2> buf_b(hst_b.data(), rg);
7 buffer<float, 2> buf_c(rg);
8

9 queue.submit([=](handler& cgh) {
10 auto o2o = access::one_to_one{};
11 accessor a{buf_a, cgh, o2o, read_only};
12 accessor b{buf_b, cgh, o2o, read_only};
13 accessor c{buf_c, cgh, o2o, write_only};
14 cgh.parallel_for(rg, [=](item<2> itm) {
15 c[itm] = a[itm] + b[itm];
16 });
17 });

initialized from some host data (not included in the code

snippet).

The central call to distr_queue::submit creates a

new task, which will later be scheduled onto one or more

GPUs across the given cluster. Celerity offers different types of

tasks for different activities, with the most common one being

a device kernel execution. Other types of tasks can be used for

example to perform host-side computations, I/O operations, or

to interface with third-party libraries. Most Celerity tasks can

be executed over a 1-, 2- or 3-dimensional index space. This

space is then split into multiple chunks that can be executed

by different workers. In Listing 1, a two-dimensional device

kernel is submitted through the call to parallel_for. The

provided callback (the kernel code) is subsequently invoked

with an index object (itm) of corresponding dimensionality,

which is used to uniquely identify each kernel thread.

B. Range Mappers

Except for namespace changes, this program closely re-

sembles a canonical SYCL program, with one important

difference: Each constructor for celerity::accessor is

provided with a range mapper, in this case a two-dimensional

instance of the one_to_one mapper.

This particular range mapper informs the runtime that

every work item (thread) of the 512 × 512 global iteration

space accesses exactly one element from buf_a, buf_b and

buf_c each — precisely at the index of the work item, which

is provided to the kernel through the itm parameter.

In general, range mappers can be (almost) arbitrary func-

tions, allowing for a high degree of flexibility. Celerity

provides several built-in range mappers for common access

patterns (such as neighborhoods for stencil codes), while users

may implement custom range mappers for specific use cases.

There is, however, one limitation on how accessors can be

associated with buffers: Celerity currently only supports output

partitioning. From a theoretical point of view (in practice,

custom acceleration data structures are employed), the runtime

system has to track the state of each individual element,

including in particular its last writer, in order to build a

data dependence graph and construct the necessary transfer

operations. As such, to maintain a consistent global view, only

one accessor may write to a given element of an output buffer

at a time.

C. Summary

While Celerity can be considered a task-based runtime
system, its default mode of operation differs significantly from

the more common approach taken, particularly in distributed

memory settings. Instead of leaving the choice of how to split

a computation fully to the user (by submitting, for example,

one task for each block in a matrix multiplication), the Celerity

approach is to consider the entire computation as a single

splittable task.

The rest of this paper focuses on the runtime design,

distributed scheduling and their performance characteristics.

For more information on the Celerity API, we refer the reader

to [25], [26].

III. RUNTIME DESIGN

The Celerity runtime system is built on top of SYCL and

MPI and runs in concert with a user provided program. While

the underlying SYCL runtime is responsible for interfacing

with the compute device, Celerity manages the distribution

of work and data throughout a cluster. We often refer to

individual Celerity processes as worker nodes, where a worker

corresponds to an MPI rank. While in the earlier implemen-

tation presented in [25] it was required to spawn a separate

worker for each GPU, in its current form, a single worker can

manage all available GPUs on a host.

As discussed in the previous section, the Celerity API

closely resembles SYCL, in that it is centered around buffers

and asynchronous tasks that perform computations on them.

However unlike in SYCL — and most other task-based

runtime systems for that matter — a task may optionally be

executed across more than a single device.

A visual overview of the runtime is given in Fig. 2: After

first being submitted, a task is analyzed regarding its require-

ments and incorporated into a task graph for later execution.

Each task is then asynchronously processed into a set of

commands that describe concrete operations to be performed

by individual worker nodes. Commands may instruct a worker

to execute parts of a task, or to transfer data to another worker,

for example. Given a set of commands corresponding to a

particular task, each worker is then individually responsible

for deciding when to execute these commands, based on the

execution status of preceding commands, and the availability

of required data.

A. Asynchronous Execution

The entire Celerity runtime system is designed with a

strong focus on asynchronicity. For this reason, a task is not

directly executed once it has been submitted. Instead, the

call to distr_queue::submit returns immediately after

insertion into the task graph, and the execution flow of the

user program continues. The command function provided as

part of a submitted task is then later asynchronously invoked,
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Fig. 2. Overview of the Celerity runtime: A user program submits tasks which are analyzed for their dataflow and inserted into the high-level task graph.
They are then split into executable chunks and assigned to worker nodes. Data transfer commands are inserted between the execution of chunks to ensure
coherence across the cluster. The per worker executor loop interfaces with the compute device, buffer manager and buffer transfer manager to run kernels and
exchange data with other nodes. All stages are executed concurrently as part of the asynchronous application pipeline.

once the time comes to actually perform computational work.

All Celerity workers spawned for a particular run execute the

same user program in single program multiple data (SPMD)

fashion, not unlike a typical MPI program. Upon submission,

tasks are analyzed regarding their requirements: Which buffers

they access and how, as well as what type of operation they

contain (for example, running a GPU kernel). At a later point

in time, once all data requirements of a task (or more precisely,

parts of a task) have been satisfied, the command function

provided as the inner C++lambda function (lines 14 through

16 in in Listing 1) is executed. There are two main benefits

to this execution model:

1) By having all worker nodes execute the exact same

user program, no explicit communication about the dis-

tributed primitives such as tasks and buffers involved in

a computation is necessary. Each node deterministically

assigns unique IDs to resources the first time they are

encountered. This requires that the control flow does not

diverge between workers.

2) If a task were to be executed right away, each task

submission would act as a global synchronization point,

in which the runtime system has to determine where to

execute which parts of the task, as well as the set of data

transfers that would be required to do so. This would

make the entire execution model much more latency sen-

sitive, and would prevent many of the benefits emerging

from asynchronous execution that will be discussed in

later sections.

Furthermore, by keeping task submission a lightweight op-

eration, the runtime is enabled to “look ahead” within the

user program. We plan to explore using this property for more

informed scheduling decision in future work.

B. Task Graph Construction

The runtime uses the information obtained by analyzing

tasks upon their submission to build a task graph, a directed

acylic graph (DAG) that encodes the dependency relationships

between tasks. Importantly, due to the additional information

provided by the range mappers, the task graph is — unlike

in SYCL — not constructed based on buffer accesses alone,

but also considers the accessed buffer locations. This means

that two or more tasks that operate on the same buffer, but in

different regions, may be executed concurrently.

As the task graph is being constructed, the set of currently

eligible tasks (that is, the set of tasks that have all their depen-

dencies satisfied) is processed further, by means of scheduling
them. Selecting the next task for scheduling currently follows

a simple first-come-first-serve policy, however more sophisti-

cated heuristics could be implemented here, which we consider

for future research.

The selected task is then converted from an abstract de-

scription of an execution into a set of concrete commands

that instruct individual Celerity workers on what to do. This

step includes deciding on whether and how to split a task into

chunks. The default behavior of Celerity is to split each task

into one chunk per GPU.

The runtime then creates one execution command for each

chunk. These commands include information about what kind

of operation to perform (e.g., running a device kernel or

invoking a host-side callback), and over which part of the

global index space of the corresponding task they operate.

Commands are again, based on their data requirements, gen-

erated as part of a DAG, the command graph, which also

includes commands for data transfers and synchronization,

among other things [26]. Generation of commands is at the

core of Celerity’s scheduling loop, which will be explained in

Section IV, where we detail how we replaced Celerity’s cen-

tralized master/worker model with a fully distributed scheme.

C. Per-Worker Executor

Once a command for a particular worker has been gen-

erated, it enters said worker’s executor loop. This loop is

responsible for all task executions as well as data transfers

on a given node. Upon entering the loop, commands become

jobs, lightweight wrappers around asynchronous operations

such as data transfers and kernel executions, which can be

cheaply polled for their completion status. The entire executor

loop is built around the idea of maintaining cheap handles to

potentially expensive operations that concurrently execute in

other threads or devices. It is thus very important that the

executor loop is not stalled by blocking operations for longer



periods of time, as this will impact all other active jobs.

The executor imposes a limit on the total number of active

jobs, in order to both maintain the performance of the loop

itself, as well as not to oversubscribe the available hardware

resources (such as GPU cores or network bandwidth). Once a

slot becomes available, a choice has to be made which of the

ready jobs to start next. Currently a simple first-come-first-

serve policy is implemented.

Readiness of a job is determined based on its dependencies,

i.e., predecessors in the command graph. Upon arrival, a

command’s predecessors are examined and compared against

the list of enqueued and active jobs. For each matching job,

its count of unsatisfied dependencies is increased by one.

Completion of a predecessor decreases the count, and reaching

zero means that the command is ready to be executed. If a

predecessor cannot be found in the list of enqueued or active

jobs, it can be assumed to have already completed (thus not

increasing the count). This assumption is valid given that the

order of arrival of commands in the executor is a topological

ordering of the command graph. The implication of this is that

the execution of commands is not constrained by the order

of their generation. Instead, the local command graph can be

processed dynamically, for example by beginning to push data

to a peer as soon as it is available, and not only once the

task that prompted the generation of this command is being

executed.

D. Buffer Management

In the SYCL programming model, a buffer does not directly

correspond to any particular memory allocation. Instead, the

runtime can freely migrate buffers between the host and po-

tentially multiple devices, in a completely transparent fashion.

However once a computation operating on a SYCL buffer is

launched, a full memory allocation is made available to the

kernel, and users can access the entire range2 of the buffer.

For Celerity’s distributed execution model a more sophis-

ticated way of managing buffers is required. After all, it is

not only wasteful to fully allocate every buffer on every GPU,

using up precious device memory for parts of a buffer that

may never be touched on a particular worker: such an approach

would also prevent Celerity applications from processing more

data than can fit in any one GPU.

For this reason, Celerity distinguishes between two types

of buffers: virtual buffers and backing buffers. Virtual buffers

correspond to the conceptual idea of a distributed buffer that is

created by the user through the celerity::buffer class.

They can span an essentially arbitrary n-dimensional range

(only limited by 64-bit integers), and are used to declare data

dependencies for tasks. However, importantly, virtual buffers

are nothing more than abstract handles, and do not incur

any actual bulk memory allocations on the host or device.

Backing buffers on the other hand correspond to the actual

data allocations on each worker node. Every Celerity worker

2Certain restrictions may apply, depending on how the corresponding buffer
accessor is created.

maintains multiple backing buffers for each virtual buffer, one

on the host, and one for each local device, ensuring coherence

between them as needed, by means of fine-grained spatial

versioning. Crucially, backing buffers are only as large as

needed, spanning an arbitrary contiguous subregion of their

corresponding virtual buffer, and are lazily resized on demand.

To the user, the dimensions of a backing buffer are of no

concern. Within kernels, buffers are accessed using their vir-

tual coordinates, and the celerity::accessor internally

performs the necessary coordinate transformations.

A problem that can arise from the lazy resizing of backing

buffers is that programs that access buffers in erratic patterns

can cause frequent re-allocations and coherence copy opera-

tions. While strategies to mitigate this problem are currently

in development, a pragmatic and effective method to avoid-

ing this overhead can be to overestimate the range mapper

specifications in the early stages of a program, such that later

accesses are already contained in the allocated backing buffer.

E. Transferring Buffers

Buffer transfers in Celerity are managed as part of the

executor loop. All transfers are implemented using the

non-blocking point-to-point MPI routines MPI_Isend and

MPI_Imrecv. In each iteration of the executor loop, the

buffer transfer manager polls the state of existing MPI trans-

fers as well as newly incoming ones. The current design relies

solely on point-to-point communication as it best matches

the asynchronous nature of the runtime system. We note

that use of MPI collective operations, while representing a

synchronization point across all participating worker nodes,

can nevertheless allow for certain communication patterns to

be implemented more efficiently, and as such their use will be

explored in future work.

Buffers are transferred together with a header. The header

contains, among other information, a description of which

part of the virtual buffer (i.e., an offset and range) is being

transmitted.

Transfers are performed on dense copies of the source data,

which are created on demand. To avoid frequent re-allocation

of these data packages, a pool of pinned host memory is used,

which also allows for more efficient asynchronous transfers

between GPUs and the host.

Buffer transfers again benefit from Celerity’s fine-grained

access management. For example, an incoming data transfer

can be written into a target buffer even if kernels are operating

on that same buffer (but in a different location) at the same

time.

IV. DISTRIBUTED SCHEDULING

Celerity uses a static scheduling model, where parts of a

task are assigned to worker nodes in a predetermined (but

configurable) fashion. Nevertheless, the fine-grained depen-

dency information generated as part of the scheduling loop,

together with the executor model described in Section III-C

allow Celerity applications to effectively leverage automatic

computation/communication overlapping.



Unlike in other distributed memory programming models,

Celerity does not require the user to settle on a data partition-

ing a-priori. While this increases usability and scheduling flex-

ibility, it requires the runtime to keep track of data distribution

down to the individual buffer element level. In this section, we

will describe how Celerity leverages this fine-grained buffer

management to turn tasks into commands, and how we ported

this mechanism from the centralized master/worker model to

a fully distributed implementation.

A. Task Hints

The Celerity programming model operates on a high level

of abstraction, trading precise control for convenience, ease

of use, and performance portability. In some situations it can

however still be beneficial to enable users to provide context-

specific semantic information about their program that can

help Celerity achieve better performance. This is achieved

through the novel task hints mechanism, which can be passed

to the runtime alongside buffer accessors and kernel submis-

sions inside command group functions:

1 queue.submit([=](celerity::handler& cgh) {
2 cgh.hint(celerity::hint::tiled_split{});
3 // create accessors, provide kernel code etc.
4 });

For example, hints allow the user to swap out Celerity’s

default one-dimensional for a 2D tiled split, or a split can

be oversubscribed by generating more than one chunk per

GPU, which might enable the runtime system to leverage

computation/communication overlapping.

Hints as an API mechanism are beneficial to both the

development of Celerity as well as users of Celerity. From the

perspective of Celerity runtime developers, hints provide a way

of quickly and easily experiment with new functionality, with-

out introducing breaking changes or unnecessarily bloating

the core API. If a particular hint’s functionality proves useful

across different applications, it may influence the development

of heuristics to automatically provide their behavior to a larger

user base. They also offer a simple deprecation path, with

hints that become superseded by heuristics or other mecha-

nisms simply turning into no-ops. From a user’s perspective,

hints provide a way for incorporating their knowledge about

domain specific characteristics of their application, or about

the hardware platform into the runtime behavior.

Crucially, these hints – together with the high level of

abstraction and consequently semantic knowledge available to

the runtime system – allow users to experiment with various

data distribution patterns and scheduling approaches without

spending a significant amount of time on engineering or

maintaining different implementation options. In Section V

we show how the combination of two hints can substantially

influence the performance of two stencil codes.

B. Turning Tasks into Commands

On a conceptual level, scheduling in Celerity means turning

abstract tasks from the task graph (as described in Sec-

tion III-B) into commands; concrete operations that can be

executed by a worker node. Other than the execution of

chunks (i.e., parts of a task) themselves, commands most

commonly describe data transfers that must be performed in

order to ensure all buffer contents are available and up to date

before a computation can begin. To express these relationships,

commands are again arranged in a directed, acyclic graph.

In the earlier design presented by Thoman et al. [25], the

Celerity runtime designated a master node that is responsible

for the generation of commands for all workers. We will use

this approach as a starting point, first describing scheduling

from a centralized perspective, and subsequently extend it to

a fully distributed scheme.

Let the index space I of an n-dimensional task be a set

of points in I
n, over which a parallel computation is to be

performed. In practice the index space is constrained to be a

dense, rectangular grid with p ≥ 0n∀p ∈ I and 1 ≤ n ≤ 3. For

example, the kernel in Listing 1 spans over a two-dimensional

index space containing all points in [0, 512)2. A split S of I
is then a set of disjoint chunks C ∈ S such that

⋃
C∈S C = I .

A range mapper is a function f : I
n → I

m that maps

an n-dimensional chunk to an m-dimensional set of buffer

elements that are accessed (for reading, writing, or both) by

that chunk. In practice both sets are again constrained to be

dense and of rectangular shape. Importantly, range mappers

must be monotonic, that is A ⊂ B ⇒ r(A) ⊂ r(B). We use r
and w to denote range mappers for reading and writing buffer

accesses, respectively.

Scheduling begins by splitting a task into several chunks,

by default one per GPU. Tasks can be split in several different

ways, for example along a single dimension (1D split) or into

tiles (2D split); this can be controlled by the user. For each

chunk a corresponding execution command is generated, and

assigned to a worker node in a deterministic way. For the

scheduling algorithm the shape of a split is not of importance,

only how many chunks there are, and to which worker nodes

they are assigned.

Given a task ta with index space Ia that writes to a buffer

x with range mapper wx,a, we call ta the last writer of the

region wx,a(Ia) of buffer x iff there exists no other task3 tb
with b > a, index space Ib and range mapper wx,b such that

wx,b(Ib) ∩ wx,a(Ia) 
= ∅.

Given tasks ta and tb and an index space Ib, tb is said to be

a successor of ta iff there exists at least one buffer x that is

written by ta and read by tb, and X = wx,a(Ia)∩rx,b(Ib) 
= ∅,

where task ta is the last writer of region X . Conversely, task ta
is then said to be a predecessor of tb. While this property over

tasks and index spaces is used to construct the task graph, the

same analogously applies to commands and their respective

chunks for constructing the command graph.

To produce a valid scheduling of a program, Celerity needs

to determine all predecessors for a given command. Note that

in practice a command can have many predecessors, as it

may access multiple buffers, and each of the accessed buffer

regions could again have several last writers. If command ca

3We assume tasks to be numbered according to their submission order.
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Fig. 3. Processing of chunks in the distributed scheduler: Two worker nodes process the same chunk C1 as part of the split S of task ta. Since the chunk
is local to node 1, it is further split into S̃, containing four chunks. Node 2 continues to work with the original chunk. Both nodes apply the range mapper
rx,a to compute the read requirements of the chunk(s). Node 1 subtracts its owned data O1

x to compute which parts need to be received from other nodes,
while node 2 intersects with O2

x to compute what data – in this case, a plane of ghost cells – needs to be pushed to node 1.

is a predecessor of command cb, and the commands were

assigned to different worker nodes, a data transfer needs to be

inserted: On the side of the last writer ca a push command is

generated, while on the side of cb an await-push command

is generated.

In order to keep track of last writers, Celerity needs to

maintain a spatial data structure containing this information

for each buffer4. After generating a pair of transfer commands,

the corresponding buffer’s last writer data structure is updated

to include the recipient node, reflecting the fact that this region

of the buffer is now replicated. This way, future accesses to

the same region (or subsets thereof) by the recipient node

won’t generate redundant transfers (instead, a simple local

dependency on the await-push command is created).

Since lookups and updates into/of the last writer data

structure need to be performed often – usually several times for

each chunk – the algorithmic complexity for these operations

becomes a concern. The current implementation of Celerity

employs a customized R-Tree [27] which yields sufficient

performance for real world data access patterns.

To summarize, in the centralized model, the master node not

only has to generate commands for all workers, but also pre-

cisely keep track of data movement within the distributed sys-

tem over time, incurring considerable bookkeeping overhead.

A worst case scenario for this approach then is an allgather-

operation across N nodes, which requires the generation of

N2 push/await-push pairs. Figure 1 demonstrates how

for such a pattern, the master/worker scheduling model starts

to exhibits scalability issues relatively quickly, with command

generation for a single task and 16 GPUs already requiring

approximately 1 millisecond, and for 128 GPUs reaching

an infeasible 100 milliseconds per task. Clearly, a different

approach is required to scale to larger clusters configurations.

4In fact, last writers need to be tracked on both the distributed level (“which
worker last wrote a particular region?”), as well as on a per-worker level, to
enable the generation of anti-dependencies, the discussion of which we will
omit for brevity.

C. Distributed Command Generation

A straightforward way of moving from a centralized mas-

ter/worker model to a distributed one would be to replicate

the same algorithm as detailed in the previous section across

all worker nodes. This way, each node would maintain a

complete view of the global data distribution in the system,

while only having to generate commands for itself. However

in practice, maintaining the last writer data structures makes

up for the bulk of the overall time spent on scheduling, and

should therefore be avoided as much as possible. The key to

enabling this is the fact that for an individual worker, the exact

location of buffer data at any given point in time is of little

importance. Instead, the only information required is whether

the newest data is currently5 available locally or not.

Given this insight, we modify the scheduling algorithm

in the following way: Instead of maintaining per-buffer last

writers, each node now only keeps track of its owned regions,

that is, parts of a buffer that it is the last writer of. Each node

splits a given task ta with index space Ia and begins to process

each of the resulting chunks, with the assignment of chunks to

nodes again following a deterministic but configurable pattern.

We distinguish between local and remote chunks, that is,

chunks that are to be executed on the current node, versus

those that are executed on other nodes. For a remote chunk

Cr, we apply the reading range mappers for each buffer

x and check whether the resulting region X = rx,r(Cr)
intersects with the owned region Ox. If it does, we generate

a push command to transfer X ∩ Ox to the node that

is executing the chunk. For a local chunk Cl we generate

an execution command and again apply all range mappers

to find the required buffer regions. For owned regions, we

simply generate a dependency onto the last writer. For all

other regions, we generate await-push commands. Unlike

in the centralized model however, we don’t await incoming

data from a particular node (as we don’t know which node

currently owns said data). Instead, await-push commands

5Here, currently refers to an anticipated state of the distributed system
within the context of the command graph.



now simply express the fact that a certain data region of a

particular buffer is expected, but not from where. In practice

this means that multiple incoming transfers can be required to

satisfy a single await-push job. To prevent mixups between

transfers across different tasks, push commands are matched

with await-push commands using a unique transfer ID that

is generated for each combination of task ID and chunk. This

is unambiguous as all nodes process chunks in the same order.

After processing all local and remote chunks of task ta,

the final step is to update the locally owned regions. To this

end, for each buffer y we compute the new owned region as

O′y = (Oy\wy,a(Ia))∪
⋃

Cl
wy,a(Cl), that is, we remove parts

written by remote chunks of task ta, while adding parts written

by local chunks. The same mechanism is used to determine

whether data that has been received from other nodes is still

valid or needs to be received again.

Finally, to prevent the generation of redundant push com-

mands, each node also maintains information on which of

its owned buffer regions have been replicated, and to which

nodes. In practice this is implemented as a collection of bit

sets stored within an R-Tree, with an active bit signifying the

data having been replicated to a particular node.

Given this scheme, the amount of scheduling work per-

formed on each node is drastically reduced, as only locally

available data regions need to be tracked. This can be seen

in Fig. 1, where the complexity of scheduling the worst-case

allgather-operation is reduced from O(n2) to O(n).

D. Multi-GPU and Oversubscription Support

The master/worker design does not lend itself well to sup-

port multiple GPUs on a single worker: Either the master node

would have to generate commands for each individual device,

while keeping track of data movements on a per-worker level,

thus increasing scheduling complexity. Alternatively, workers

could be required to further split the commands they receive,

recomputing their dependencies and distributing them across

local devices, thus substantially increasing complexity on the

workers. For this reason, in the centralized model, a separate

worker process needs to be spawned for each GPU in a system,

which can lead to unnecessary intra-node data transfers and

wastes host-side memory with duplicate data, among other

problems.

The distributed scheduling model on the other hand can eas-

ily be extended to support multiple GPUs on a single worker:

Thanks to the range mapper’s monotonicity requirement, local

chunks can be split further arbitrarily, without affecting the

data requirements as seen from the outside by another node.

We therefore extend the algorithm from the previous section

to recursively split local chunks into one chunk per GPU.

In fact, we can generate even more chunks than that, thus

oversubscribing each GPU with multiple commands, which

can enable computation/communication overlapping for cer-

tain applications and data access patterns. While each of these

chunks can generate separate await-push commands, their

respective transfer IDs are still generated based on the original

chunk, which again matches what is seen from the outside.

Figure 3 illustrates how the same chunk is handled differently

by two worker nodes.

Notably, supporting multiple GPUs within a worker node

only affects the number of generated chunks, while owned

buffer regions are still tracked on a per node level, which

further reduces the scheduling cost. Coherence between device

buffers is then instead ensured during actual execution, with

the buffer manager (described in Section III-D) keeping track

of last-writers as commands are being processed, issuing

device-to-device transfers as appropriate.

We currently generate one push command for each last

writer. As explained previously, from the recipients perspective

it does not matter how many incoming transfers there are,

but from a performance standpoint it may seem preferable

to consolidate multiple pushes into one to reduce the overall

messages transmitted in the distributed system. However, there

are two advantages to this approach: On the sender side,

a single consolidated push command represents a partial

synchronization point in the execution of the local commands;

only once all participating writers have finished, the transfer

can start. Fine-granular pushes on the other hand can start

immediately once their data is ready. Conversely, on the

receiving side, execution commands can potentially start early

instead of having to wait until data required by other chunks

has arrived. This is particularly important for oversubscription,

where these fine-granular transfers are essential to enabling

computation/communication overlapping.

We note that the choice of how many commands to generate

represents an interesting tradeoff, and sending data based on

last writers is only one possible heuristic, with other patterns

left to explore in future work.

V. EXPERIMENTAL EVALUATION

We present experimental weak scaling results for five dif-

ferent application benchmarks, obtained for up to 128 GPUs

on the Marconi-100 supercomputer at CINECA in Bologna,

Italy, which places 24th in the TOP500 at the time of writing6.

Table I lists the configuration of a single cluster node and our

software setup. The following applications were benchmarked,

representing 4 common HPC dwarf classes [28]:

• Black-Scholes from FinanceBench [29] and HeCBench

[30] computes European option pricing using the Black-

Scholes-Merton process using single precision floating

point values. The total number of options computed for

each configuration is NGPU × 4.5 · 108.

• N-Body performs a distributed all-pairs N-body simula-

tion. From a distributed memory benchmarking perspec-

tive, the most critical aspect of this benchmark is that

an all-to-all update of the body states is necessary in

each time step, before the subsequent all-pairs update.

The number of simulated bodies for each configuration is

≈ √
NGPU×5.24 ·105. Note that, in order to achieve weak

compute workload scaling, the ratio of memory access to

compute and transfer operations must by necessity change

6https://www.top500.org/system/179845/



across the experiment, as a linear growth in compute

necessitates a square-root growth in simulated bodies.

• Unstructured Mesh This benchmark performs a finite

element simulation on an unstructured domain of ele-

ments, with per-element connectivity information. The

domain is pre-split into an appropriate number of sub-

domains depending on the degree of (distributed memory

node) parallelism. The number of elements for each

configuration is ≈ NGPU × 9.44 · 106. As is common

with unstructured mesh simulations, the single-GPU per-

formance of this benchmark is primarily limited by the

available memory bandwidth, as the arithmetic intensity

is below what would be required to saturate the GPU

compute units. A single update operation on the mesh

also features no significant temporal or spatial data re-

use, and therefore caches are not particularly effective.

• WaveSim simulates the 2D wave equation over a series

of time steps, using finite differences to approximate the

solution to the differential equation at each time step. It

is implemented as a classic 5-point stencil code operating

on two buffers representing the simulated domain at time

steps t and t−1. The side length of the simulated domain

for each configuration is ≈ √
NGPU × 2.45 · 104.

• Cahn-Hilliard from HecBench [30] and [31] is a phase-

field simulation of spinodal decomposition. It is imple-

mented as a three-dimensional 7-point stencil and uses

three alternating kernels. The side length of the simulated

domain for each configuration is ≈ 3
√
NGPU × 768.

Note that the choice of problem size for each benchmark

involves a tradeoff between maximizing per-GPU memory

usage and avoiding other limiting factors, such as available

host memory, for larger configurations. All benchmarks were

run ten times for each GPU configuration and the presented

results are the median value of those runs. Most benchmarks

include warmup iterations to ensure all kernels are compiled

and buffers are resized to their final dimensions. Figure 4

shows the results. All results are presented in terms of domain-

specific throughput metrics, with the y-axis indicating the

throughput achieved per GPU This is in principle similar to

parallel efficiency (a horizontal line would indicate perfect

scaling), while also showing absolute differences in achieved

throughput between different variants of the application. We

include comparisons with baseline MPI + SYCL implementa-

tions for four of the benchmarks. These baselines have been

optimized to a reasonable degree and use MPI primitives

best suited to the particular use case (for example collective

allgather operations for N-Body). For the two stencil codes we

include variants that make use of CUDA-aware MPI RDMA

through SYCL’s backend interoperability features.

Black-Scholes: Being a compute intensive benchmark with-

out communication, it acts as a baseline for the other bench-

marks. We can see that for up to 128 GPUs, Celerity tracks

closely with the MPI implementation, maintaining very high

parallel efficiency of 95%. We attribute the slight downwards

trend to synchronization overhead involved in timing of the

application, as run times are very short in absolute terms (tens

of milliseconds).

N-Body: In absolute terms, on a single GPU, the N-Body

benchmark achieves approx. 5.2 TFLOPs/s in double precision

arithmetic, or nearly 75% of the theoretical hardware peak of

7.0 TFLOPs/s.

The multi-GPU scaling of the N-Body benchmark with

Celerity is generally good, achieving more than 70% efficiency

on 128 GPUs, despite the required all-to-all communication.

The shape of this chart appears irregular with slightly superlin-

ear performance at 2 and 8 GPUs and a dip in performance for

the 16 GPU case. These artifacts can be attributed to a large

variance in kernel run times that stem from caching effects

that become visible when adjusting the body count for this

weak-scaling experiment.

This is further backed by the MPI implementation exhibiting

the same dip at 16 GPUs, while otherwise tracking closely

with Celerity. We see that Celerity slightly outperforms MPI

for most configurations; we attribute this to the larger overhead

incurred by using one rank per GPU in the MPI implemen-

tation. For 128 GPUs MPI gains the lead due to the use of

collective communication operations, a feature that will be

explored in future work.

Unstructured Mesh: For the Unstructured Mesh finite ele-

ment simulation, as mentioned previously, the absolute per-

formance level is best investigated by observing the effective

memory bandwidth achieved during a run. On a single GPU,

the benchmark achieves a throughput of 1.8 billion elements

per second, or an estimated 441 GB/s, which equals 49% of the

900 GB/s theoretical hardware peak. Given the – per necessity

– data-dependent and unstructured memory accesses required

by a simulation on an unstructured mesh, this is a good result.

In terms of multi-GPU scaling, the unstructured mesh

benchmark shows no particular anomalies, achieving an ex-

cellent 90% parallel efficiency.

A very interesting algorithmic property of this code is that

finite elements on the borders between subdomains are updated

first, and independently of the bulk of inner elements. Without

any additional work on behalf of the application developer, the

Celerity runtime system is able to leverage the pattern of data

accesses induced by this behavior in order to overlap transfers

with computation. In practice, updates to the border elements

are transmitted while the current update on inner elements is

being performed.

WaveSim and Cahn-Hilliard: For the two stencil codes, we

compare four different split configurations, enabled by means

of task hints (as described in Section IV-A). 1D refers to a

TABLE I
PER-NODE SPECIFICATION FOR THE BENCHMARKING SYSTEM.

Host: IBM POWER9 16C 3 GHz, 256 GB RAM
GPUs: 4x NVIDIA V100 GPUs 16 GB, NVLink 2.0
Interconnect: Mellanox InfiniBand EDR DragonFly+
Software: RHEL 8.1; Spectrum MPI 10.4.0.03rtm4; GPU

driver 450.51.06; CUDA 11.0, hipSYCL v0.9.1
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Fig. 4. Per-GPU throughput of weak scaling experiments performed on Marconi-100 (higher is better). Note the cropped y-axes.

split along the slowest dimension 0, whereas 2D refers to a

tiled split in dimensions 0 and 1. ×N is the oversubscription

factor, where ×4 means that four chunks are generated for

each GPU. We can see that for WaveSim, all split types perform

well, achieving at least 85% efficiency. The oversubscribed 1-

dimensional split performs best, achieving an excellent 93%

parallel efficiency. By using optimized CUDA-aware RDMA

communication (a feature not yet supported by Celerity) the

baseline MPI implementation compensates for the lack of

oversubscription, achieving the same throughput as Celerity.

We conclude that WaveSim is mostly limited by latency

rather than communication bandwidth, and overlapping works

better in a 1-dimensional split, as there are fewer communi-

cations to hide. Cahn-Hilliard on the other hand shows the

opposite behavior: With it being a 3-dimensional stencil, the

amount of data transferred between each iteration is much

larger than for WaveSim, making the choice of split and

effective computation/communication overlapping much more

important. Beyond 32 GPUs (or 16 in the case of MPI RDMA,

due to scratch buffers), the size of the 2D slabs created by the

1-dimensional split exceeds the memory available on a single

GPU. The 2D×4 split continues to scale however, achieving

a solid 81% parallel efficiency on 128 GPUs. We note that

the switch from a 1D split without oversubscription to 2D×4
amounts to adding two lines of code.

We summarize that all of the presented benchmarks achieve

good scalability, and track closely with the MPI + SYCL

baseline implementations where available. While all of the

discussed applications can be considered mini-apps, we note

that they represent a selection of communication patterns that

form the basis of many larger applications. In fact, several

of the improvements discussed in this work, in particular

distributed scheduling, were implemented out of necessity for

achieving scalability in real world production applications,

results for which will be published in future work.

VI. CONCLUSION

In this work, we have given a detailed review of the

Celerity programming model and distributed runtime design.

We replaced the centralized master/worker scheduling model

by a fully decentralized scheme which improves the scheduling

complexity for a worst-case scenario from O(n2) to O(n),
while maintaining the existing high-productivity API surface.

We evaluated the feasibility of the proposed design in five

application benchmarks from different scientific domains on

up to 128 GPUs. The results generally show good scalability,

with four out of five benchmarks achieving over 80% parallel

efficiency on 128 GPUs. This can at least in part be attributed

to Celerity’s innate ability to perform automatic compu-

tation/communication overlapping. Furthermore, we demon-

strated how the performance of two stencil codes can be

considerably improved by means of a novel task hinting API,

which allows quick experimentation with different splitting

patterns while requiring only minimal code changes.
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