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Abstract—Message Passing Interface (MPI) is a well-known
standard for programming distributed and HPC systems. While
the community has been continuously improving MPI to address
the requirements of next-generation architectures and applica-
tions, its interface has not substantially evolved. In fact, MPI
only provides an interface to C and Fortran and does not
support recent features of modern C++. Moreover, MPI programs
are error-prone and subject to different syntactic and semantic
errors.

This paper introduces EMPI, an Enhanced Message Passing
Interface based on modern C++, which is directly mapped to
the OpenMPI implementation and exploits modern C++ for safe
and efficient distributed programming. EMPI proposes novel
C++ RAII-based semantics and constant specialization to prevent
error-prone code patterns such as parameter mismatch, and
reduce the overhead of handling multiple objects and per-
invocation time. Consequently, EMPI programs are safer: six
out of nine well-known MPI error patterns do not occur while
correctly using EMPI semantics. Experimental results on five
microbenchmarks and two applications on a large-scale cluster
using up to 1024 processes show that EMPI’s performance is very
similar to native MPI and considerably faster than the MPL C++
interface.

Index Terms—Message Passing Interface (MPI), Modern C++,
Programming Models, High Performance Computing

I. INTRODUCTION

The Message Passing Interface (MPI) is the de facto stan-
dard for programming distributed memory systems. Since the
first definition of the standard in 1994 [1], development and
standardization efforts have been continuous and led to several
improvements in terms of topology [2], remote memory access
[3], accelerator support [4], fault tolerance [5] and more.

Although the standard has evolved in terms of features, its
interface — which provides a set of routines directly callable
from C, C++, and Fortran — has not significantly changed.
Its programming interface has been recognized to be error-
prone [6]: MPI programs are subject to syntactic errors such
as incorrect arguments, lost or dropped requests, data type
and tag mismatching, wrong buffer usage, as well as semantic
errors such as displacement and index out of range errors.
Therefore, many researchers have investigated MPI code error
detection based on static [7] and runtime [8, 9] analysis.

On the other hand, modern C++ has considerably expanded
in recent years and has become the reference programming
language for many high-productive, high-performance pro-
gramming frameworks such as SYCL [10], KoKKoS [11],
RAJA [12], and Celerity [13]. In particular, the combination

of programming techniques such as RAII1 and SFINAE2,
together with new language features such as Lambda func-
tions, Constant expressions, CTAD3 (C++17), Constraints and
Concepts (C++20), have drastically enhanced the capability
and productivity of C++ programs.

Recent work such as BoostMPI [14], MPL [15, 16], and
MPP [17] provide a high-level C++ interface to the MPI li-
brary; however, they do not provide advanced features such as
error mitigation techniques, constant static checks, or implicit
waits for asynchronous calls. On top of that, existing C++
message passing interfaces are a direct mapping to the C-based
MPI interface. This, potentially, is a limitation since it does
not allow for across-the-stack improvements, e.g., by removing
unneeded runtime checks for better performance. Therefore, to
implement such optimizations, the interface must go beyond
the C interface and interact with the lower layers of the MPI
implementations.

Our work aims to use modern C++ to provide a high-level
message passing interface. In contrast to the state-of-the-art,
our interface is built on top of the OpenMPI [18] implemen-
tation. Thanks to the flexibility and programmability of C++
and interacting directly with the lower layers of OpenMPI, our
work reduces the complexity of the code and prevents some of
the most common programming errors. Moreover, it provides
the potential to translate some of the checks related to constant
parameters from runtime to compile-time.

This paper presents the Enhanced Message Passing Interface
(EMPI)4, a new message passing interface based on modern
C++, and makes the following contributions:

• We implement EMPI, a modern C++ interface for mes-
sage passing built on top of a customized version of
OpenMPI, which allows for flexible and efficient mapping
of EMPI semantics to communication primitives.

• Through EMPI, we propose two new RAII-based se-
mantics, program context and message group, that en-
hance programmability, reduce the code’s complexity,
and prevent some error-prone code patterns such as
lacking a matching wait for asynchronous calls. EMPI
also introduces an efficient request-handling method for
asynchronous calls in each message group that reduces
the overheads of handling multiple request objects.

1Resource Acquisition Is Initialization
2Substitution Failure Is Not An Error
3Class Template Argument Deduction
4The ongoing project can be accessed at https://github.com/unisa-hpc/empi
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• We present EMPI’s constant specialization mechanism
within message groups, which allows for (optionally)
specifying EMPI function arguments as compile-time
constants to prevent parameter mismatches and reduce
the per-call invocation time.

• We experimentally evaluated EMPI in terms of potential
check times saved by our methodology against equivalent
MPI functions. Finally, we evaluated the performance
of EMPI on five micro-benchmarks and two real-world
applications against OpenMPI and MPL, the state-of-the-
art C++ MPI binding.

The rest of the paper is organized as follows. Section
II gives an overview of EMPI, then presents its interface
semantics: program context, message group, and circular re-
quest pool. Section III focuses on profiling MPI run-time
checks and explains the message group constant specialization
mechanism, which allows the removal of the runtime checks.
Section IV presents the experimental evaluation. Related work
is presented in section V, and section VI concludes the paper.
The Artifacts of the paper are described in section VIII.

II. EMPI OVERVIEW

EMPI is a C++ library that aims to enhance the MPI
programming model’s interface while providing competitive
performance. Its objective is to provide a more modern and
straightforward interface to MPI while exploiting C++ lan-
guage features to reduce programming errors and improve
performance. It is developed using C++20, exploiting several
modern C++ features.
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Fig. 1: OpenMPI and EMPI abstraction layer architectures.

Figure 1 compares the abstraction layer architecture of
EMPI against OpenMPI (OMPI). As shown in this figure,
the EMPI’s lightweight interface is directly coupled with the
OpenMPI interface and can interact with underneath layers.
This allows EMPI, for instance, to skip some runtime checks,
which are always performed when interacting with the MPI
interface (unless specific flags are used). Therefore, the user
application is developed based on EMPI’s C++ semantics
and compiled with the customized version of OpenMPI that
calls unchecked functions. In this customized OMPI, each
communication primitive has a corresponding unchecked ver-
sion, which delivers the same functionality as the original
function, with the difference that some of the runtime checks

are skipped. For example, for MPI_Bcast, there is a corre-
sponding Unchecked_MPI_Bcast.

Nevertheless, an EMPI application is still able to call
standard MPI functions if unchecked semantics are not used.
This means that the EMPI user application can still compile
on all the standard MPI implementations, but it can benefit the
optimizations mentioned in this paper only if compiled with
our customized OMPI.

To clarify, figure 2 compares the call sequences of OMPI
and EMPI. In OMPI, typically, when the user program calls an
MPI primitive (e.g., MPI_Send), it performs several checks
on all the passed parameters to this function, e.g., buffers,
data size, data type, tag, communicator, etc. Then, it performs
the main communication part (send in this example), which
accomplishes the data transfer. In EMPI, however, when a
communication primitive is called from the user’s application,
it is mapped to an unchecked function. This function performs
only the checks that are not removable, i.e., cannot be in-
ferred statically, and finally performs the communication. The
following sections describe the details of EMPI’s unchecked
semantics.

A. Program Context
RAII is a popular C++ programming discipline that pro-

vides safe management of system resources. It systematically
encapsulates program resources in classes and performs all
acquisitions and releases of such resources within constructors
and destructors of the corresponding class. By making resource
acquisition and release in this way, RAII not only provides
safe resource management, which has been identified to be a
challenge in MPI [19], but also minimizes the risk of leaking
resources by cleaning them up at the end of their usage.

Considering the complications of the MPI programming
model and the high possibility of carrying out simple pro-
gramming errors, RAII can highly contribute to reducing the
possibility of errors by avoiding error-prone code patterns
while sometimes reducing the number of lines of code. In fact,
EMPI proposes several RAII-based semantics that improve
programmability and remove those error-prone patterns.

In MPI, a program starts with MPI_Init() and ends with
MPI_Finalize(). The first use case of RAII in EMPI has
been the characterization of program context, which defines
the initialization and finalization of the EMPI program. In
this way, MPI_Init() and MPI_Finalize() functions
are replaced with one line of code to create the EMPI program
context, and the user codes are written within this context. An
example of such context creation is shown in Listing 1. By
defining this semantic, we ensure not to forget finalizing the
EMPI program.
using namespace empi;
Context ctx(&argc, &argv);

Listing 1: EMPI program context definition.

B. Message Group
In MPI, it is very common to have program regions where

all communication primitives share one or more parameters.
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Fig. 2: OpenMPI and EMPI call sequences for a send operation.

For example, the communicator, the message size and the
message type may be the same for a group of messages;
similarly, it is common to have a pair of matching send-
receive that share the same message tag. By exploiting non-
type template parameters, SFINAE, and C++20 Concepts,
we propose the message group semantic, which retains some
communications that have some parameters in common. The
idea behind implementing the message group semantic is to
make EMPI able to specialize constant variables whose values
can be set dynamically during the program’s runtime. In fact,
a message group is an object that holds a communicator and
provides an interface to EMPI functionalities. Hence, each
MPI function is overloaded in a way that a user can selectively
specify parameters as compile-time constants or at runtime.

For the message group interface, EMPI provides a run
function to be used for a list of EMPI calls that share one or
more parameters. It takes a lambda function with a message
group handler object as its input. This message group handler
object is created by the message group and can be specialized
with several compile-time parameters such as type, message
size, and message tag. Within the lambda, the message group
handler invokes the EMPI calls, and each call shares the
compile-time parameters specified in the message group han-
dler definition. Thanks to the message group semantic, the
constant parameters can be specified (and checked) at compile
time rather than runtime. On the programmability side, we
pass fewer parameters to the EMPI communication functions,
reducing the possibility of errors and parameter mismatches
between coupled communication functions (e.g., send and
receive). On the performance side, this technique improves
performance by enabling us to shift some of the checks
related to those constant parameters from runtime to compile-
time. Accordingly, such checks are done only once within the
message group constructor rather than per invocation.

Listing 2 illustrates message group creation within the
previously-defined program context (in listing 1). As shown,
the main communication happens in the run function,
with three compile-time arguments (datatype,tag,size)
shared between all the calls within the lambda. The user
can invoke the EMPI primitives and collectives through the
message group and the message group handler.

message_group = ctx.create_message_group(comm);
message_group->run(
[&](MessageGroupHandler <datatype,tag,size> &mgh){
// Do Work and Communication

});

Listing 2: Message group creation in EMPI, with three
compile-time arguments.

C. Implicit Wait for Asynchronous Calls

One common MPI programming mistake is forgetting to
match waits with non-blocking calls. To address this problem,
in EMPI, each asynchronous call is implicitly recorded by the
message group in a request pool. When the message group
is destroyed, a wait is called on all the dangling calls. This
allows the programmer to nest C++ scopes and execute EMPI
asynchronous calls in RAII fashion while ensuring all the
requests are implicitly completed outside the current block.

For this purpose, we have defined run_and_wait func-
tion for the message groups, to be replaced with run func-
tion (in listing 2), in which an implicit wait_all() is
called automatically at the end of lambda. In this way, we
not only remove some lines of code related to waiting for
each asynchronous call but also guarantee to wait for all
the asynchronous calls at the end of the scope. Listing 3
presents an example of EMPI for Ibcast collective with
run_and_wait. In this example, data type and data size are
constant within the message group, and the wait_all() is
omitted due to the usage of run_and_wait.

message_group->run_and_wait([&](MessageGroupHandler<char,
notag, N> &mgh) {

mgh.Ibcast(message, 0);
// Do Some Work

}); //implicit wait here

Listing 3: EMPI Implicit wait example.

D. Explicit Wait and Request Handling

As an alternative to the implicit wait, EMPI provides a way
to explicitly define a wait within a message group. In this
case, we use a normal run lambda, but instead of relying
on the automatic wait-on-exit semantic, we explicitly call the
waitall function in the message group. Using non-implicit



wait in a message group, EMPI takes care of the MPI request
objects that are usually associated with non-blocking com-
munications. Hence, for each asynchronous communication,
EMPI will automatically store the new request object in a
request pool. Later within the same message group, when a
new request object is demanded, the first available request
in the pool is returned. Likewise, when a request has been
fulfilled (e.g., a wait was called on it), it is marked as available
and can be reused later in the rest of the current message
group. In this way, and by reusing the requests, we minimize
the overheads of creating and deleting multiple requests within
each message group for asynchronous calls.

An example of explicit wait for asynchronous calls in
EMPI is shown in listing 4. This example illustrates a one-
dimensional stencil that takes advantage of the explicit wait
at the end of each iteration of the for loop. The request
pool is internally handled within Isend and Irecv. In this
example, at the end of each iteration, (explicit) waitall()
waits for all the communications to be finished. However,
instead of releasing the request objects, they could be reused
in subsequent iterations. Therefore, only four requests are
allocated in the message group, reused in different iterations,
and deleted at the end of that message group.
message_group->run(
[&](MessageGroupHandler<char, Tag{0}, n> &mgh) {
for (auto iter=0; iter<max_iter; iter++){
mgh.Irecv(rbuff, prev);
mgh.Irecv(rbuff, next);
mgh.Isend(Sbuff, prev);
mgh.Isend(Sbuff, next);
mgh.waitall(); // Explicit wait

}
});

Listing 4: Explicit wait example with a 1-dimensional stencil.

The usage of request pool within the implementation of
Isend function is shown in listing 5. When there is a need
for a request, calling request_pool->get_req() returns
the first available request in the request pool to be re-used.
Notice that in this listing, instead of calling MPI_Isend,
MPI_IUsend that is an unchecked equivalence, is called, and
some of the parameters’ checks required by this function are
specialized with the requires keyword.
template<typename K>
requires (is_valid_container<T,K> || is_valid_pointer<T,K>)

&& has_size_v<SIZE> && has_tag_v<TAG>
shared_ptr<async_event>& Isend(K&& data, int dest)
{
// The request pool returns the first available request
auto&& event = request_pool->get_req();
// Call the unchecked OMPI Send
event->res = MPI_IUsend(details::get_underlying_pointer(

data), SIZE, details::mpi_type<T>::get_type(),dest, TAG
.value, communicator, event->request.get());

return event; //Reference to the request
}

Listing 5: EMPI implementation with concepts and request
pool usage in the Isend function.

E. Semantics Overview

Table I summarizes EMPI’s principal classes and semantics.
Worth noting that, in addition to the features mentioned, EMPI

provides direct support for contiguous STL containers, such as
std::vector and std::array. It also exposes a pointer
interface that can be used for other data types.

Semantic Scope

Program Context Initializes and manages the EMPI environment, and
enables message groups creation

Message Group Wraps a communicator, exposes EMPI functions,
and creates Message Group Handlers

Message Group
Handler

Represents compile-time constant parameters (i.e.
tag,sizes,type), offers constant specialization, and
invokes EMPI primitives

Implicit Wait
Handler

Implicitly waits and handles the asynchronous
EMPI calls by wrapping request objects

Request
Handling

In a request pool, stores async events and provides
collective functions over them, handles dangling
requests

TABLE I: Principal EMPI semantics.

As described in this section, EMPI minimizes the possibility
of some programming errors by utilizing novel semantics.
Table II summarizes a list of well-known MPI programming
errors [20]: six out of nine error patterns are prevented by
correctly utilizing EMPI semantics.

Error type Error explanation Avoided
by
EMPI

Avoidance
Strategy

Type mismatch Buffer type and specified MPI
type do not match

✓ Message
Group

Incorrect buffer
referencing

Buffer is not correctly refer-
enced when passed to an MPI
function

✕ -

Invalid
argument
type

i.e. non-integer type used
where only integer types are
allowed

✓ Message
Group

Unmatched
P2P call

Unmatched point-to-point call ✕
-

Unreachable
call

Unreachable calls caused by
deadlocks from blocking MPI
calls

✕ -

Double non-
blocking

Double request usage of non-
blocking calls without inter-
mediate wait

✓ Request
Handling

Unmatched
wait

Waiting for a request that was
never used by a non-blocking
call

✓ Request
Handling

Missing wait Non-blocking call without
matching wait

✓ Implicit
Wait

No Init/Finalize Forgetting to put MPI Init and
MPI Finalize

✓ Program
Context

TABLE II: The list of some common MPI programming errors
and corresponding EMPI’s avoidance strategies.



III. MESSAGE GROUP CONSTANT SPECIALIZATION

In MPI applications, a group of communications very often
use the same parameters, e.g., data type, tag, size, or com-
municator. To some extent, these parameters can be treated as
constant values for those communications within each message
group handler. EMPI constant specialization represents con-
stant parameters whose values can be set dynamically during
the execution of the program. In other words, the values of
these constants are fixed within the scope of a message group.

Exploiting EMPI’s constant specialization in message
groups prevents passing multiple parameters to EMPI’s com-
munication primitives and therefore reduces the possibility
of programming errors. This semantic also enables us to
benefit from diminishing the checking overheads within each
communication function.
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Fig. 3: Percentages of checks to the overall time taken by
different OMPI function invocations on 2 processes.

Considering the OMPI’s interface communication primi-
tives, each function consists of several checks plus the main
operation, which performs the communication (As demon-
strated in figure 2). These checks are primarily to check if the
data type, message size, and communicator are defined for the
required buffers and if they are accessible. Also, they check the
validity of the value of parameters like tag, data type, buffers,
communicators, etc., passed to each call. Although most of
the invocation time of each MPI communication call is spent
during the data transfer (main operation), a small fraction of
each MPI call is spent while doing all the above-mentioned
checks. Therefore, utilizing constant specialization, we skip
some of the checks in each message group for the constant
parameters. In fact, EMPI performs those only once in the
message group’s constructor. For this, the unchecked functions
are called in EMPI as the backend communication functions
within the message group. These unchecked functions are
implemented in EMPI’s OpenMPI and carry out what the
normal function does, except they skip some time-consuming
checks handled by the message group.

Before making any effort to eliminate some checks using the
constant specialization, we need to investigate if the amount
of time spent during these checks is considerable. For this,
we designed a profiling system to measure the accurate times
of each phase of the functions on a single node. Since the
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Fig. 4: Taken times by the two phases of OMPI communication
functions with different data sizes on two processes.

measured times are in micro/nano seconds, we report the
summation times of 1000 iterations of each communication
function. Figure 3 shows the percentage of the checks’ times to
the overall time taken by some OMPI calls while transferring
different data sizes on two processes. As indicated in this
figure, a small but still considerable fraction of each OMPI
call’s time is spent in runtime checks. It reaches around 6%
in Isend/Irecv while operating on small messages. However,
by increasing the data size, the communication time becomes
dominant, and the checks times fraction becomes smaller.
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Fig. 5: Taken times by the two phases of OMPI communication
functions with 22 Bytes of data and different numbers of MPI
processes.

As a deeper look inside the functions, figure 4 distinguishes
between checks’ times and main operation time. Figure 4a



MPI_Init(&argc, &argv);
MPI_Comm_size(comm, &procs);
MPI_Comm_rank(comm, &myid);
if (myid == 0) {
MPI_Send(arr, n, MPI_CHAR, 1, 0, comm);
MPI_Recv(arr, n, MPI_CHAR, 1, tag, comm, &status);

} else { // Node rank 1
MPI_Recv(myarr, n, MPI_CHAR, 0, tag, comm, &status);
MPI_Send(myarr, n, MPI_CHAR, 0, 1, comm);

}
MPI_Barrier(comm);
MPI_Finalize();

Listing 6: MPI ping-pong example.

Context ctx(&argc, &argv);
ctx.create_message_group(comm)->run(
[&](MessageGroupHandler<char,Tag{0},n> &mgh) {
if(mgh.rank() == 0){
mgh.send(message,1);
mgh.recv(message,1,status);

}else{
mgh.recv(message,0,status);
mgh.send(message,0);

}
mgh.barrier();

});

Listing 7: EMPI ping-pong example.

MPI_Init(&argc, &argv);
MPI_Comm_size(comm, &procs);
MPI_Comm_rank(comm, &myid);
int tag1 = 0;
int tag2 = 1;
MPI_Irecv(buf[0], 1, MPI_INT, prev, tag1, comm, &reqs[2]);
MPI_Irecv(buf[1], 1, MPI_INT, next, tag2, comm, &reqs[3]);
MPI_Isend(&rank, 1, MPI_INT, prev, tag2, comm, &reqs[0]);
MPI_Isend(&rank, 1, MPI_INT, next, tag1, comm, &reqs[1]);
{ /* do some work */ }
MPI_Waitall(4, reqs, stats);
MPI_Finalize();

Listing 8: MPI 1-dimensional communication asynchronous
example.

Context ctx(&argc, &argv);
ctx.create_message_group(comm)->run_and_wait(
[&](MessageGroupHandler<double,notag,size> &mgh){
Tag tag1{0};
Tag tag2{1};
mgh.Irecv(&buf[0], message_group->prev(), tag1);
mgh.Irecv(&buf[1], message_group->next(), tag2);
mgh.Isend(&rank, message_group->prev(), tag2);
mgh.Isend(&rank, message_group->next(), tag1);
{ /* do some work */ }
}); // Waitall is implicit here

Listing 9: EMPI 1-dimensional communication asynchronous
example.

shows the checks times-only for different OMPI calls, while
figure 4b presents the times taken only by the main operation
of the functions. Although the checking times are almost
constant for all the functions and do not scale with the message
size, the main operation (communication) times increase with
the increment of message size for all the functions. That is why
the percentage of checks’ times to the overall time decreases
with the increment of message size in figure 3. Note that there
is a slight variation in the check and communication times
with different message sizes due to the performance variability
issue [21].

To figure out how much time is spent performing the checks
when increasing the number of processes, we performed a
scalability test with constant input data size (22 bytes) for
each collective. As shown in figure 5, both checks’ times and
communication times increase with increasing the number of
processes for the three collectives. However, checks times do
not grow the same as communication times since they are
much smaller (smaller than 25 us for all of them), and even
if they increase, their proportion would still be much smaller
than the communication times.

Overall, this is evident that an important percentage of each
OMPI call’s time is spent while performing runtime checks.
Moreover, the check times do not scale with changing the
message size of the corresponding call, and this time is in-
variant for different message sizes. Nevertheless, checks times
increase with increasing the number of processes primarily
because some checks have to be done for each participant
process in that communication which slightly contributes to
the increment of overall checks times. But regarding the high

growth of the communication time at the same time, when
having more processes, checking times’ share of the overall
time gets smaller. Therefore, by specializing the constant
parameters within message groups, the checks related to those
specialized parameters are omitted for all the calls inside that
message group, and a small performance gain is achieved.
Regardless, this gain would be higher while operating on
smaller message sizes and fewer processes.

IV. EXPERIMENTAL EVALUATION

In this section, we experimentally evaluate EMPI in terms
of interface and performance. In particular, we compared the
EMPI interface against the MPI classical interface along with
EMPI’s performance against MPI (over OpenMPI) and MPL
(the state-of-the-art) on five micro-benchmarks and two mini-
applications on a large-scale cluster.

A. Experimental Setup

The experiments are performed on Marconi100 [22] at the
CINECA supercomputing center [23]. Marconi100, with 55
racks, is an IBM Power9-based system with 980 nodes (plus
8 login nodes). Each node is equipped with two IBM AC922
CPUs with 16 cores (32 cores/node and 31,616 cores overall)
at 2.6 (3.1 turbo) GHz, four NVIDIA Volta V100 GPUs with
16GB and Nvlink 2.0, and 256 GB of memory/node (252,928
GB overall). The internal network is Mellanox InfiniBand
EDR Dragonfly+ 100Gb/s. The operating system is Red Hat
Enterprise 7.6, and all the codes are compiled with gnu 10.3.0
and OpenMPI 4.1 using the -O3 flag.



B. Interface Evaluation

We compare EMPI and MPI interfaces with selected code
examples that illustrate the EMPI features and their advantages
against the MPI interface. Listings 6 and 7 compare a ping-
pong example in MPI and EMPI using two processes. In
the EMPI example, the program has one program context
that consists of a message group. All the communications
within this message group share the same communicator
comm, and all the functionality happens within the message
group’s run function. Moreover, MessageGroupHandler
object (mgh) handles the communications and specializes the
constant parameters (data size and type, in this example) for
the message group. In this example, in the send and recv,
the programmer only needs to specify the data and the source
or destination. In this way, we not only reduce the possibility
of parameter invalid or mismatch between paired functions but
also reduce the code complexity.

In listings 8 and 9, we illustrate the implementations of
a 1-dimensional asynchronous message exchange with both
MPI and EMPI. Likewise, in this EMPI example, message
type and size are specialized as constants inside the message
group handler. Also, by using the run_and_wait function,
there is no need to put any explicit wait at the end of the
message group. The functions prev() and next() in this
code snippet, respectively, return the previous and next MPI
rank in the current message group.

C. Performance Evaluation

This section focuses on the performance of EMPI and
evaluates it against pure MPI (OpenMPI) as the baseline, and
MPL, as the state-of-the-art in C++ message passing interface.
For this purpose, we primarily take a set of micro-benchmarks
from OSU [24], then compare their performance on different
message sizes. Afterward, we keep the message size constant
and evaluate it with varying numbers of processes. In addi-
tion to the micro-benchmarks, we evaluate two applications,
LULESH5 [25] and Vibrating String [26], and assess them
on hundreds of MPI processes. Each experiment is repeated
1000 times for the micro-benchmarks and 100 times for the
applications, and the average time is reported. Moreover, to
consider the variability in the results mostly originating from
potential network noises, we show the error bars for the inter-
node experiments.

1) Micro-benchmarks: For the micro-benchmarks compar-
ison, we take five micro-benchmarks, including blocking and
non-blocking peer-to-peer, Bcast, Ibcast, and Allreduce, and
compare their performance on two processes with different
message sizes, as shown in figure 6. For all the micro-
benchmarks, except for Allreduce, EMPI performs very simi-
larly to OMPI and always performs better than MPL. Specif-
ically, it performs 15% faster than Send/Recv MPL for 216

bytes.
In this figure, for smaller messages, the EMPI’s perfor-

mance is 34%, 7%, 27%, 56%, and 25% higher than MPL
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Fig. 6: OMPI, EMPI and MPL on 2 MPI processes on a node.

for Send/Recv, Isend/Irecv, Allreduce, Bcast, Ibcast on 22

bytes. This performance improvement is because of the gain
from calling unchecked functions underneath, which shows
to be more fruitful when dealing with small messages. In
Allreduce, EMPI’s slowness of OMPI is mainly because of
this collective’s usage of two buffers, which makes the efforts
of function invocations for passing parameters, and buffer
handling larger than the other collectives.

In figure 7, for the collective micro-benchmarks, we evaluate
the performances of EMPI, MPL, and OMPI on different
numbers of processes within a node. This evaluation is done
with three different sizes: 22, 28, and 216 bytes. For Bcast
and Ibcast, with 22 and 28 bytes, EMPI performs almost the
same as OMPI, while MPL performs slower, and there is a
gap between their performances. Nevertheless, in 216 bytes of
Bcast and Ibcast, all three interfaces show similar latencies
for different numbers of processes. Because with increasing
the scalability, either the advantages of removing checks or
libraries overheads get less effective and the communication
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Fig. 7: OMPI, EMPI and MPL with different number of processes on a node and with three different message sizes.

time dominates all the optimizations and overheads of the
library.

In Allreduce, however, EMPI performs slower than OMPI
for the three sizes, although it is still faster than MPL for 22

and 28 bytes. In 216 bytes, EMPI Allreduce performs the same
as MPL and it becomes slower than OMPI. This is mainly
because of C++ function invocation overheads considering
that all the parameters are passed by reference and cannot
be instantiated at compile time. Also, Allreduce handles two
buffers which makes the invocation overheads more than
other collectives. It is also an un-rooted algorithm in which
the same checks are performed for all ranks on both intra
and inter-communicators. While increasing the scale, each
process requires some time to create, check, and manage its
buffers, and using C++ semantic to handle data imposes some
overhead. Similarly, the performance gain from unchecked
functions gets less fruitful when increasing the number of
processes and message size.

2) Vibrating String: The Vibrating String is a mini-
application that solves the time-dependent one-dimensional
wave equation to obtain the displacement of a vibrating string
via a finite difference discretization and explicit time step-

ping. The MPI implementation of this mini-application mainly
performs one-dimensional non-blocking communications. The
strong scaling results are shown in figure 8 with 1001 total
number of grid points on both single-node (8a) and multi-node
(8b) environments with up to 1024 processes (1-16 nodes).

As demonstrated in figure 8, for different numbers of
processes, EMPI performs faster than MPL, and its execution
time does not drastically change from 4 to 64 processes. In
contrast, in MPL, when increasing the number of processes,
the execution time slightly increases (EMPI is 29% faster than
MPL for 4 processes and is 44% faster on 64 processes),
which is because of the lower internal overheads and using
the unchecked communications by EMPI. Additionally, on
more than one node, although the execution times of all
three interfaces get closer, EMPI is still more efficient than
MPL and is 21% faster than MPL with 1024 processes. The
reason behind the slowness of EMPI compared to OMPI is
the overheads of function invocations within the EMPI layer
that overcomes the benefits of using it. However, EMPI is still
showing a higher performance than MPL on different number
of processes.
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Fig. 8: OMPI, EMPI and MPL for the Vibrating String mini-
application.

3) LULESH: LULESH is a proxy application from the
shock hydrodynamics area. Using MPI two-sided non-
blocking APIs, within each iteration, all the processes commu-
nicate with all their neighbors in a three-dimensional domain
and exchange their ghost fields (boundary data).

Figure 9 presents the weak-scaling performance comparison
of LULESH implemented with OMPI, MPL, and EMPI on
8–1000 processes (1-16 nodes) with the default problem size
of 27,000 and 10 internal iterations. In this figure, both MPL
and EMPI demonstrate a performance close to the OMPI.
However, EMPI is performing even faster than OMPI when
increasing the number of processes; with 1000 processes, it
is 8% and 13% faster than OMPI and MPL, consecutively.
This slight performance gain is primarily because of the ap-
plication’s communications behavior. In LULESH, iteratively,
each process does a non-blocking data exchange with all of
its neighbors in a 3-dimensional space. All the exchanged
messages are of the same size and type, and the communicator
does not change for them, as well. Hence, this application
is the best fit for EMPI, and its characteristics allow the

application to benefit both the request pool and constant spe-
cialization. Therefore, in this example, when there are higher
numbers of processes — which means more asynchronous
calls — the benefits of using the EMPI interface dominate
its overheads, and EMPI shows higher performance.
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Fig. 9: OMPI, EMPI and MPL for the LULESH proxy
application.

V. RELATED WORK

In recent years, the C++ programming language has be-
come a popular choice for developing high performance ap-
plications. With the emergence of heterogeneous computing
systems and the evolution of the C++ standard to what is
called modern C++, some novel C++-based heterogeneous
programming models such as Kokkos [11], and SYCL [10]
have been designed to reach portability across multiple target
devices. These models have also been successful for real-world
scientific applications [27]. In line with these efforts, there
have also been efforts to exploit modern C++ features in MPI.

The efforts to bring a C++ binding to MPI started since the
development of the first MPI versions [28, 29, 28]. Skjellum
et al. [29] were among the first who tried to introduce a C++
binding for MPI by proposing MPI++. Their goal was to make
their implementation syntactically and semantically consistent
with the C interface. Later, Object-oriented MPI (OOMPI) [28]
was introduced, which was an attempt to provide a C++
class library for MPI and bring object-oriented into MPI.
By bringing together OOMPI’s object-oriented design and its
ease of use and MPI++’s new features of C++, a merged
system was proposed [30]. This merged system resulted in
a standard binding within the MPI-2 standard. Kambadur et
al. [14] proposed BoostMPI in which they investigated several
solutions to modernize the C++ interface to MPI and provide
a more natural syntax. Hence, they tried to provide seamless
support for C++ standard library constructs and user-defined
types. They also show latency improvement by using function
specialization and serializing the data types. In line with these
efforts, MPP [17] was introduced, which was an advanced C++
interface to MPI. In this work, they brought together some
ideas of OOMPI and BoostMPI, resulting in a lightweight
header-only C++ interface. They focused on point-to-point



communications and integration of user data types, relying on
native MPI Datatypes for better performance.

Recent research investigated the use of C++20 and MPI
3. Ruefenacht et al. [31] discuss how the C-based MPI
interface is holding MPI back as a whole. They suggest a
performance-portable modern C++ language interface for MPI
to maintain productivity, performance, and interoperability.
Ghosh et al. [16] proposed a prototypical interface derived
from MPL [15], an MPI-based open-source C++17 library.
For this purpose, they removed the MPI-unrelated features of
MPL to make it more lightweight, and considered handling
point-to-point/collective communication, derived data types,
communication completion, and communicator interfaces.

Table III compares EMPI with state-of-the-art. With respect
to state-of-the-art, MPP is the only work that provides both
performance features and error mitigation strategies. MPP’s er-
ror mitigation is limited to inferring some information required
by MPI routines at compile-time. Also, MPP supports peer-
to-peer communications and does not investigate collective
communications. In another recent work, MPL, there is no
error mitigation strategy. They only compare their work’s
performance against MPI and provide some insights and future
directions of such MPI and C++ bindings. In contrast to these
two works, EMPI investigates several error reduction tech-
niques and is capable of removing six out of nine well-known
MPI error patterns [20]. It also evaluates the performance
against both MPI and MPL and shows considerably higher
performance than MPL. In comparison to related work, EMPI
relies on OpenMPI to deliver more efficiency and performance.

Method C++ Programming Style Perf.
Evalu-
ation

Error
reduc-
tion

Skjellum et
al. [29]

Basic object-oriented MPI library ✕ ✕

OOMPI
[28]

Object-oriented stream-based MPI ✕ ✕

BoostMPI
[14]

C++03 object-oriented MPI library
with data serialization mechanism

✓ ✕

MPP [17] Lightweight C++11 header-only,
object-oriented MPI library

✓ ✓

Ruefenacht
et al. [31]

In-depth analysis of C++ MPI ca-
pabilities

✕ ✕

Ghosh et
al. (MPL)
[16]

C++17 header-only MPI library
with complex data layout support

✓ ✕

EMPI C++20, low-overhead OMPI-
mapping, message passing
interface with message grouping

✓ ✓

TABLE III: Comparison with the state of the art.

VI. DISCUSSION AND CONCLUSION

In this paper, we proposed EMPI, which is a modern C++-
based message passing interface implemented on top of Open-
MPI that attempts to enhance MPI’s interface. The proposed

work improves programmability thanks to C++ features such
as RAII and SFINAE and makes the application code less
error-prone: six out of nine well-known MPI error patterns
are totally avoided by correctly exploiting EMPI. Moreover, by
proposing two new semantics, program context and message
group, EMPI contributes to decreasing the code’s complexity
and reduces the number of parameters passed to each commu-
nication call by compile-time constant specialization.

Relying on a customized implementation of OpenMPI that
skips some unnecessary checks within each MPI communi-
cation call, EMPI offers a comparative performance to MPI
(OpenMPI) and a higher performance than MPL, the state-
of-the-art. In fact, it showed that it could achieve a near-MPI
performance for different micro-benchmarks and applications
with different message sizes and hundreds of processes on a
large-scale compute cluster. It, however, should be noted that
currently, EMPI does not provide support for all new MPI
features, and it only handles some basic features, such as peer-
to-peer and collective communications and basic data types.
As future work, we are working to integrate more modern
C++ and MPI features in EMPI while investigating to reduce
possible overheads to make it able to be used for more use-
cases and applications.

All in all, modern C++ has shown to be an excellent choice
for implementing a high-level interface for message passing
libraries. It not only provides a better programming experience
to the users by reducing the possibility of errors and reduc-
ing complexity but also can improve overall performance.
Worth noting that adopting a C++ interface is straightforward.
Mainly, due to the growing popularity of C++ as a language
for scientific and high-performance computing, it seems the
right time for the MPI community to develop a standard C++
interface for MPI to meet the evolving needs of the HPC
community. Regarding the results achieved in this paper, we
show that it is very hard to get higher performance than C-
based MPI by only enhancing the interface. Therefore, the
MPI backend layers must undergo some modifications (e.g.
handling some checks statically, enabled by C++) to improve
the efficiency of C++ binding.
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Barthou, and Guillaume Papauré. “Dynamic Data Race Detection
for MPI-RMA Programs”. In: EuroMPI 2021-European MPI Users’s
Group Meeting. 2021.

[9] Rana A Alnemari, Mai A Fadel, and Fathy Eassa. “Integrating static
and dynamic analysis techniques for detecting dynamic errors in MPI
programs”. In: International Journal of Computer Science and Mobile
Computing 7.4 (2018), pp. 141–147.

[10] Ben Ashbaugh, Alexey Bader, James Brodman, Jeff Hammond,
Michael Kinsner, John Pennycook, Roland Schulz, and Jason Sewall.
“Data parallel c++ enhancing SYCL through extensions for productiv-
ity and performance”. In: Proceedings of the International Workshop
on OpenCL. 2020, pp. 1–2.

[11] H Carter Edwards, Christian R Trott, and Daniel Sunderland. “Kokkos:
Enabling manycore performance portability through polymorphic
memory access patterns”. In: Journal of parallel and distributed
computing 74.12 (2014), pp. 3202–3216.

[12] David A Beckingsale, Jason Burmark, Rich Hornung, Holger Jones,
William Killian, Adam J Kunen, Olga Pearce, Peter Robinson, Brian S
Ryujin, and Thomas RW Scogland. “RAJA: Portable performance for
large-scale scientific applications”. In: 2019 IEEE/ACM international
workshop on performance, portability and productivity in hpc (p3hpc).
IEEE. 2019, pp. 71–81.

[13] Peter Thoman, Philip Salzmann, Biagio Cosenza, and Thomas
Fahringer. “Celerity: High-level c++ for accelerator clusters”. In: Euro-
pean Conference on Parallel Processing. Springer. 2019, pp. 291–303.

[14] Prabhanjan Kambadur, Douglas Gregor, Andrew Lumsdaine, and
Amey Dharurkar. “Modernizing the C++ interface to MPI”. In: Eu-
ropean Parallel Virtual Machine/Message Passing Interface Users’
Group Meeting. Springer. 2006, pp. 266–274.

[15] GitHub - rabauke/mpl: A C++17 message passing library based on
MPI. https://github.com/rabauke/mpl. (Visited on 12/06/2022).

[16] Sayan Ghosh, Clara Alsobrooks, Martin Rüfenacht, Anthony Skjellum,
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Davide Gadioli, Emanuele Vitali, Gianluca Palermo, and Andrea Bec-
cari. “Towards a portable drug discovery pipeline with SYCL 2020”.
In: International Workshop on OpenCL. 2022, pp. 1–2.

[28] Brian C McCandless, Jeffrey M Squyres, and Andrew Lumsdaine.
“Object oriented MPI (OOMPI): a class library for the message passing
interface”. In: Proceedings. Second MPI Developer’s Conference.
IEEE. 1996, pp. 87–94.

[29] Anthony Skjellum, Ziyang Lu, Purushotham V Bangalore, and Nathan
Doss. “Explicit parallel programming in C++ based on the Message-
Passing Interface (MPI)”. In: Parallel Programming Using C+ (1995),
pp. 767–776.

[30] Anthony Skjellum, Diane G Wooley, Ziyang Lu, Michael Wolf, Pu-
rushotham V Bangalore, Andrew Lumsdaine, Jeffrey M Squyres, and
Brian McCandless. “Object-oriented analysis and design of the Mes-
sage Passing Interface”. In: Concurrency and Computation: Practice
and Experience 13.4 (2001), pp. 245–292.

[31] Martin Ruefenacht, Derek Schafer, Anthony Skjellum, and Pu-
rushotham V Bangalore. “MPIs language bindings are holding MPI
back”. In: arXiv preprint arXiv:2107.10566 (2021).

https://github.com/rabauke/mpl
https://www.hpc.cineca.it/hardware/marconi100
https://www.hpc.cineca.it/hardware/marconi100
https://www.top500.org/system/179845/
https://mvapich.cse.ohio-state.edu/benchmarks/
https://mvapich.cse.ohio-state.edu/benchmarks/


VIII. ARTIFACT APPENDIX

EMPI is an Enhanced Message Passing Interface based
on modern C++, which is directly mapped to a customized
version of OpenMPI (OMPI) implementation and exploits
modern C++ for safe and efficient distributed programming.
The artifact consists of two parts: first, the customized
OMPI, which adds a new version of point-to-point and col-
lective communications without runtime checks. Second is
the EMPI, which is the programming interface built on top
of the customized OMPI. Both the customized OMPI and
EMPI source codes are open-source and publicly available
at https://doi.org/10.5281/zenodo.7727977 In this section, we
present a brief description of the artifact. More details are
presented in the README file of the repository.

Important Notice: The codes in the paper are tested on
a Supercomputer (Marconi100 @CINECA supercomputing
center), and its specifications are described in the paper;
however, due to the unique specifications of this system (job
scheduler, hardware, etc.) and considering the fact that not
everyone might have access to such a system, in this artifact
description, we provide all the details on how to build and run
the code on a local machine.

A. Artifact Checklist and Requirements

Hardware: In addition to the Marconi100 (equipped with
IBM Power 9 CPUs), it was also tested on a single-node
machine with two Intel Xeon Gold 5218 at 2.30 GHz, with
64 cores and 200 GB of main memory. It, however, should
be compiled on any CPU (with multiple cores) capable of
compiling OpenMPI 4.1.

Software and OS: Tested with Ubuntu Server 20.04 op-
erating system, and all the codes are compiled with C++20
(e.g., gcc 12). The requirements for building the codes are as
follows:

• Python 3.8.10
– command
– argparse

• M4 1.4.18
• Autoconf 2.69
• Automake 1.16.1
• Libtool
• Flex 2.6.4

B. Environment Setup and Build process

Step-1: Setup the basic environment: To facilitate in-
stalling the requirements and dependencies, their installation
script is placed in script/ directory and can be installed
with the following command:

pip3 install -r
empi/scripts/requirements.txt

Then, and before the building process, make sure to source
the set-env.sh to set up the environment as follows:

source set_env.sh

Step-2: Setup the customized OMPI: There are some
dependencies related to OpenMPI. For ease of use, all these
dependencies are included under the folder sources/, and
by running the script build_openmpi.sh, you can unpack
and compile OpenMPI and the dependencies as follows.

source build_openmpi.sh

The OpenMPI code is located under deps/openmpi.

Step-3: Setup EMPI and the Microbenchmarks: For
building EMPI, follow the instructions below:

cd empi
mkdir build
cd build
cmake .. -DCMAKE_BUILD_TYPE=Release

-DCMAKE_CXX_COMPILER=
$WORKSPACE/deps/openmpi/bin/mpicxx
-DCMAKE_CXX_FLAGS=’-O3
-ffast-math -march=native
-I$WORKSPACE/deps/openmpi/include’

make -j

Step-4: Building LULESH: The LULESH application can
be found under empi/benchmarks/LULESH. LULESH
uses the CMake variable -DWITH_MPI=[1|0] to enable the
MPI implementation and -DUSE_EMPI=[1|0] to enable the
EMPI version. To build LULESH with EMPI, type:

cd $WORKSPACE/empi/benchmarks/LULESH
mkdir build
cd build
cmake .. -DCMAKE_BUILD_TYPE=Release

-DCMAKE_CXX_COMPILER=
$WORKSPACE/deps/openmpi/bin/mpicxx
-DCMAKE_CXX_FLAGS=’-O3
-ffast-math -march=native
-I$WORKSPACE/deps/openmpi/include’
-DWITH_MPI=1 -DUSE_EMPI=1
-DEMPI_PATH=$WORKSPACE/empi/include

make -j

C. Running the Experiments

There are six python scripts under empi/scripts/ nam-
ing:

• minibench.py
• lulesh.py
• vibrating_string.py
• paper_minibench.py
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• paper_lulesh.py
• paper_vibrating_string.py

The first three will launch the microbenchmarks and ap-
plications while taking some command line arguments to
customize each run and manually specify the input parameters.
The last three will replicate the paper’s experiments by launch-
ing the apps with the paper’s specified sizes and the number
of processors. In this case, the input parameters passed by the
user are ignored.

To get more information about the command line pa-
rameters to configure the benchmarks and applications ex-
ecution, type python [minibench.py | lulesh.py
| vibrating_string.py] --help.

For example, to run all the micro-benchmarks with:
• 4 Processors (--num_proc=4)
• 4 Bytes of message size (--size=2)
• 10 Inner iterations per benchmark (--app_iter=10)
• 20 Outer repetitions per each mpirun

(--app_restart=20)
• Root permissions (if you are root)
• Default dependencies path
You can run the experiments with the following com-

mand, and for the applications, you just need to replace
the minibench.py python script with the related script
mentioned before.

python3 minibench.py
--num_proc=4
--size=2
--app_iter=10
--app_restart=20
--root

Reminding that the parameters only need to be passed to
the first three scripts under empi/scripts/ and the ones
with paper_ prefix can be executed without passing any
parameters.
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