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Abstract
PHP is a dynamically typed programming language commonly
used for the server-side implementation of web applications. Ap-
proachability and ease of deployment have made PHP one of the
most widely used scripting languages for the web, powering im-
portant web applications such as WordPress, Wikipedia, and Face-
book. PHP’s highly dynamic nature, while providing useful lan-
guage features, also makes it hard to optimize statically.

This paper reports on the implementation of purely static byte-
code optimizations for PHP 7, the last major version of PHP. We
discuss the challenge of integrating classical compiler optimiza-
tions, which have been developed in the context of statically-typed
languages, into a programming language that is dynamically and
weakly typed, and supports a plethora of dynamic language fea-
tures. Based on a careful analysis of language semantics, we adapt
static single assignment (SSA) form for use in PHP. Combined with
type inference, this allows type-based specialization of instructions,
as well as the application of various classical SSA-enabled com-
piler optimizations such as constant propagation or dead code elim-
ination.

We evaluate the impact of the proposed static optimizations on
a wide collection of programs, including micro-benchmarks, li-
braries and web frameworks. Despite the dynamic nature of PHP,
our approach achieves an average speedup of 50% on micro-
benchmarks, 13% on computationally intensive libraries, as well
as 1.1% (MediaWiki) and 3.5% (WordPress) on web applications.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Compilers; D.3.4 [Programming Languages]:
Processors—Optimization

Keywords PHP, static optimization, SSA form

1. Introduction
In order to keep pace with the rapidly increasing growth of the
Web, web application development predominantly favors the use of
scripting languages, whose increased productivity due to dynamic
typing and an interactive development workflow is valued over the
better performance of compiled languages.

PHP is one the most popular [1] scripting languages used for the
server-side implementation of web applications. It powers some of
the largest websites such as Facebook, Wikipedia and Yahoo, but
also countless small websites like personal blogs.

In order to support its more dynamic features, PHP, like many
other scripting languages, has traditionally been implemented using
an interpreter. While this provides a relatively simple and portable
implementation, interpretation is notoriously slower than the exe-
cution of native code. For this reason, an increasingly common av-
enue to improving the performance of dynamic languages is the
implementation of just-in-time (JIT) compilers [2], such as the
HHVM compiler for PHP [3]. On the other hand, JIT compilers
carry a large cost in terms of implementation complexity.

In this work, we pursue a different approach: purely static, trans-
parent, bytecode-level optimization. By this we mean that a) run-
time feedback is not used in any form, b) no modification to the
virtual machine or other runtime components is required and c) op-
timizations occur on the bytecode of the reference PHP implemen-
tation. The latter point implies that, unlike many alternative PHP
implementations, we must support the full scope of the language,
including little used and hard to optimize features.

This static approach is motivated by the PHP execution model,
which uses multiple processes to serve short-running requests
based on a common shared memory bytecode cache. As this makes
runtime bytecode updates problematic, many dynamic optimization
methods become inapplicable or less efficient. We pursue interpre-
tative optimizations partly due to the success of PHP 7, whose
optimized interpreter implementation performs within 20% of the
HHVM JIT compiler for many typical web applications [4].

Our optimization infrastructure is based on static single assign-
ment (SSA) form [5] and makes use of type inference, both to en-
able type-based instruction specialization and to support a range of
classical SSA-based optimizations. Because PHP is dynamically
typed and supports many dynamic language features such as scope
introspection, the application of classical data-flow optimizations,
which have been developed in the context of statically typed lan-
guages, is challenging. This requires a careful analysis of problem-
atic language semantics and some adaptations to SSA form and the
used optimization algorithms.

Parts of the described optimization infrastructure will be part of
PHP 7.1. Our main contributions are:

1. A new approach to introducing SSA form into the PHP lan-
guage, including adaptation for special assignment semantics
and enhancement of type inference using π-nodes.

2. The implementation and analysis of a wide range of SSA-
enabled optimizations for a dynamic language.

3. An experimental evaluation on a collection of micro-bench-
marks, libraries and applications, including WordPress and
MediaWiki.

The remainder of the paper is structured as follows: section 2
describes related work on dynamic language optimization. Sec-
tion 3 presents relevant PHP language semantics and section 4 dis-
cusses the use of SSA form in PHP. SSA-enabled static optimiza-
tions investigated in this work are described in section 5. An experi-
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mental evaluation on micro-benchmarks, libraries and applications
is presented in section 6. The paper closes with a discussion and
conclusion in sections 7 and 8.

2. Related Work
SSA Static single assignment form [5] has become the preferred
intermediate representation for program analysis and optimizing
code transformations, and is used by many modern optimizing
compilers [6–8]. Data-flow algorithms are often simpler to imple-
ment, more precise and more performant when implemented on
SSA form. Typical examples include sparse conditional constant
propagation [9] and global value numbering [10]. More recently,
SSA form has become of interest for compiler backends as well,
because the chordality of the SSA inference graph simplifies regis-
ter allocation [11].

Specific applications often require or benefit from extensions
of the basic SSA paradigm. Array SSA form [12] modifies SSA
to capture precise element-level data-flow information for arrays
for use in parallelization. Hashed SSA form [13] extends SSA to
handle aliasing, by introducing additional µ (may-use) and χ (may-
define) nodes. The ABCD algorithm [14] introduces π-nodes to
improve the accuracy of value range inference. In this work, we
further extend this idea for use in type inference.

A focus of recent research has been on the formal verification
of SSA-based optimizations [15–17], as well as SSA construction
[18], and destruction [19].

Dynamic language optimization Many different approaches to
improving the performance of traditionally interpreted dynamic
languages have been investigated. The most successful in terms of
raw performance are JIT compilers [2].

Another avenue is the translation of code to a lower-level lan-
guage. For example, the Starkiller project [20] translates Python
code to C++, using an augmented Cartesian product algorithm [21]
for type inference. However, this approach is often not able to sup-
port all language semantics.

Run-time feedback can be integrated into interpreters in a
number of ways. Dynamic interpretation [22] interprets a flow
graph that models not only control flow but also type uncertainty.
Würthinger et al. [23] use an abstract syntax tree (AST) based in-
terpreter on the premise that modification of ASTs to incorporate
runtime feedback is simpler than modification of bytecode. Brun-
thaler [24] approaches the problem of dynamic bytecode updates
by adding an additional inline cache pointer to each instruction.

The overhead of the virtual machine itself may also be reduced.
Threaded code [25], superinstructions and replication [26] reduce
indirect branch misses. Favorable instruction scheduling reduces
instruction cache misses [27].

PHP optimization The wide adoption of the PHP language has
motivated the development of several projects aiming at improving
its performance.

The undoubtedly most significant one is the HipHop Virtual
Machine (HHVM) [3] developed by Facebook. HHVM uses a
JIT compiler operating on tracelets, which are regions of code
with a single entry but potentially multiple exits. Tracelets are
symbolically executed in a single-pass, forward data-flow analysis
annotating instructions with input and output types, where statically
unknown input types are observed at runtime. Type guards at the
start of the tracelet allow optimization to proceed using mostly
complete type information. If a type guard fails, the tracelet can
be compiled with another set of input types.

The precursor of HHVM is the HipHop compiler (HPHPc) [28],
which compiles PHP code to C++. The compiler specializes the
generated code based on types inferred using an adaptation of
the Damas-Milner constraint-based algorithm [29]. No bytecode

representation is used, instead all operations are performed on
the AST level. HPHPc does not support some of PHP’s dynamic
language features and requires all code to be known in advance.

The phc compiler [30] also translates PHP to C. A large focus of
the phc implementation is on accurately modeling the aliasing be-
havior of references. To achieve this, flow- and context-sensitive
alias analysis, type inference and constant propagation are per-
formed simultaneously and prior to construction of Hashed SSA
form. In our work we will largely ignore this aspect, because accu-
rate handling of references has become much less important after
PHP 5.4 removed support for call-time pass-by-reference. Addi-
tionally, issues that will be discussed in section 3.5 effectively pre-
vent this kind of analysis if PHP’s error handling model is fully
supported.

A number of alternative PHP implementations leverage existing
JIT implementations. Phalanger [31] and its successor Peachpie
[32] target the .NET CLR, while Quercus [33] and JPHP [34] target
the JVM. HippyVM [35] uses the RPython toolchain. While many
of these projects report improvements over PHP 5, they cannot
achieve the same level of performance as a special-purpose JIT
compiler such as HHVM.

3. Optimization Constraints
PHP supports a number of language features that complicate static
analysis. In the following, we discuss how they affect optimization
and also justify why we consider certain optimization approaches
to be presently impractical. Some of the mentioned issues apply to
many scripting languages (dynamic typing), while others are PHP
specific (references). As we operate on the bytecode of the ref-
erence PHP implementation, a few implementation-specific con-
straints are also covered.

While the following discussion primarily deals with features
that inhibit optimization, there are also two properties of the PHP
language that make it more amenable to static optimization than
many other scripting languages: First, PHP has a strictly separated
function scope and requires global variables to be imported explic-
itly. Second, PHP does not support runtime replacement of func-
tions or methods (“monkey-patching”).

3.1 Dynamic and Weak Typing
PHP is a dynamically typed language, which means that types of
variables are generally only determined at runtime and may vary.
Additionally the type system is weak, by which we mean that use
of mismatched types in operations generally does not lead to an
error, and is instead handled through implicit and potentially lossy
type conversions. For example "foo"*"bar" evaluates to integer
zero, because the non-numeric strings are cast to zero prior to
multiplication.

Additionally, it is common for basic operations to return differ-
ent result types depending on the types and values of their operands.
For example, the addition operator may have an integer, a floating
point number, an array, or an overloaded object as the result type.
This result type overloading makes it harder to statically infer types.

3.2 References
With the exception of objects and resources, PHP uses by-value
argument passing and assignment semantics by default. For exam-
ple, if an array is passed to a function, any modifications to it will
not be visible outside the function. References provide a mecha-
nism to circumvent this by creating a mutable cell which can be
shared by multiple variables. Figure 1 shows a basic usage exam-
ple. References may be created dynamically and conditionally, so
that it cannot always be statically determined whether or not a vari-
able holds a reference. A comprehensive analysis of references and
their interaction with copies can be found in [36].
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$var1 = 42;
$var2 = &$var1;
$var2 = 24;
var_dump($var1); // int(24)

Figure 1. Basic references example. $var1 and $var2 end up
pointing to a shared mutable storage location.

Particularly problematic for optimization is the ability to specify
functions as accepting arguments by-reference, as shown in Fig-
ure 2, because there is no indication that by-reference argument
passing is used at the call-site (only at the declaration-site). This
implies that we have to pessimistically assume by-reference pass-
ing if we cannot determine the callee statically.

function inc(&$n) { $n++; }
$i = 1;
inc($i);
var_dump($i); // int(2)

Figure 2. By-reference argument passing. Variable $i is con-
verted into a reference during the call.

3.3 The Use-Def Nature of Assignments
In many languages an assignment to a variable has no behavioral
dependence on the previous value held by this variable: an assign-
ment constitutes a definition of the variable, but not a use. This does
not hold in PHP for a number of reasons.

Firstly, assignments to references can be understood in terms
of a pointer write *ptr = val in C. In this case the variable
ptr itself is only read, while the write occurs to the location it
points to. The same is true for references in PHP. Secondly, if the
assigned-to variable is the last holder of an object with a destructor,
the assignment will execute it.1 This requires knowing the previous
value of the variable, constituting a use. Lastly, the assignment
operator may be overloaded, in which case it behaves similarly to a
method call, again constituting a use.

Due to these cases, we have to assume that any assignment acts
as both a use and definition of a variable. As will be discussed later,
this has a significant impact on the structure of the SSA graph and
commonly requires special treatment during optimization.

3.4 Dynamic Scope Modification
PHP supports dynamic scope introspection through “variable vari-
ables,” as shown in Figure 3. In this example, $varName stores the
name of a different local variable $var and then indirectly modi-
fies it using the ${$varName} syntax.

$var = 42;
$varName = ’var’;
${$varName} = 24; // behaves as: $var = 24;
var_dump($var); // int(24)

Figure 3. Variable variables example. $var is modified indirectly
using its name stored in $varName.

There are a number of other ways to perform similar operations.
For example, the extract() function allows the extraction of
an associative array into the local scope. A particular concern for

1 While PHP makes no strict guarantees, it is generally understood that
(non-circular) object destruction occurs as soon as possible.

optimization is that such a function might be called dynamically, as
shown in Figure 4. This would severely limit optimization, because
various special handlers (e.g., autoloading and error handlers) can
perform implicit function calls in many situations. To circumvent
this problem, we have submitted a language change proposal to
forbid dynamic calls to scope introspection functions, which has
been accepted for PHP 7.1 [37].

$i = 42;
$fn = ’extract’;
$fn([’i’ => 24]); // behaves as: $i = 24;
var_dump($i); // int(24)

Figure 4. The extract() function, which extracts an associa-
tive array into the local scope, is called dynamically. This is forbid-
den as of PHP 7.1.

This allows us to detect all dynamic scope introspection stati-
cally, in which case we exclude the function from optimization en-
tirely. The reason for this choice is pragmatic: dynamic scope intro-
spection is extremely rare in real applications. As such, a more fine-
grained approach, such as treating variable-variable assignments as
potential modification points for all variables, is not worthwhile.

3.5 Error Handling
Next to exceptions, the primary error handling mechanism in PHP
are runtime warnings. Unlike exceptions, these warnings do not
abort the current execution path. Instead, they are displayed or
logged, and an error-indicating value such as null is returned from
the offending operation. The possibility of such an error-indicating
value reduces the quality of type inference results.

The more significant problem, is the possibility of registering an
error handler, which is invoked whenever a runtime warning is trig-
gered. As nearly all operations in PHP have error conditions, this
means that arbitrary code can run at nearly any point in a function.
This makes application of optimizations to global variables (which
may be modified by the error handler) infeasible.

Even worse, the variable scope in which the error occurred is
passed as an argument to the error handler. While this generally
does not allow modification of variables, it does allow arbitrary
changes to references, as well as object properties. This possibility
effectively prevents us from performing type analysis on references
or object properties, even if they are otherwise local to the function.
(This is a good example of how a single ill-considered feature can
significantly limit optimization work.)

3.6 Pseudo-main Scope
A PHP file can, next to declarations for functions, classes, etc., also
contain freestanding code, referred to as pseudo-main code. Such
code will adopt the scope from the location it was included in (for
a top-level include this would be the global scope).

Figure 5 illustrates why this kind of scope-adoption impedes op-
timization: through clever use of an object destructor, it is possible
to change the result of a simple addition, even though all variables
were explicitly assigned beforehand. Together with the possibility
of performing modifications through an error handler, this makes
the pseudo-main scope highly unpredictable. As such, we exclude
it from optimization. This is not problematic for modern PHP code,
which is (apart from some initialization code) fully contained in
classes or functions, but it does limit applicability to legacy code.

3.7 Type Annotations
PHP supports annotating function signatures with argument and re-
turn value types. Unlike similar features in some other scripting
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// file1.php
$a = 1;
$b = 1;
var_dump($a + $b); // int(2) via file1.php

// int(5) via file2.php

// file2.php
$b = new class {

function __destruct() {
$GLOBALS[’b’] = 4;

}
};
include ’file1.php’;

Figure 5. Example of scope-adoption in pseudo-main scope.
The behavior of file1.php is significantly altered if included
through file2.php, which forces a specially crafted scope.

languages, these type annotations do not merely serve static anal-
ysis, but are actually enforced at runtime. However, types are only
checked at call boundaries, so that an argument int $n will en-
sure that $n is an integer on entry into the function, but will still
allow a subsequent assignment of a different type, such as $n =
"str". Nonetheless, these type annotations provide valuable type
roots for use in type inference.

However, type annotations for scalar types such as booleans,
integers and floats (which are the most useful for inference) have
only been introduced in PHP 7 and as such are not yet in wide use
(and consequently played no role in our experimental evaluation).
We expect that these type annotations will become more useful
for optimization in the future. Additionally, it is likely that type
annotation support will be expanded to include object properties
at some point [38]. This would be especially valuable, because
it circumvents the issue discussed in section 3.5, which prevents
inference of object property types.

3.8 Execution Model and Virtual Machine
PHP applications are commonly deployed based on a shared-
nothing architecture, where each incoming request is handled start-
ing from a clean slate. By default this also applies to the compiler:
all used scripts have to be tokenized, parsed and compiled to byte-
code (called opcodes in PHP) anew on each request. Because this
carries significant overhead, all performance-sensitive deployments
additionally make use of an opcode cache (opcache), which caches
the compiled bytecode for files in shared memory (SHM). As com-
pilation time is less important in this configuration, opcache also
contains the optimization infrastructure which we are extending.

PHP applications are not compiled as a whole. Instead, indi-
vidual files are included at runtime, at which point they are either
compiled or loaded from SHM. It is possible to reference symbols
that will only be defined at a later point in time without forward
declarations. Additionally, if opcache is used, all files are com-
piled completely independently (without knowledge of previously
defined symbols) to avoid cache dependencies. This limitation of
the current architecture is significant, because it implies that we do
not know the signature of any function defined outside the current
file, and must pessimistically assume all arguments to be passed by
reference, as discussed in section 3.2.

As our goal is to perform purely static and transparent bytecode
optimizations, we have to work within the framework of the current
PHP virtual machine (VM). The instruction format is essentially a
three-address code with at most two input and one output operands,
though sometimes input operands are modified in-place. The VM
supports two main kinds of variables: compiled variables (CVs)

correspond to actual variables in the program code (such as $foo),
while temporary variables are introduced by the compiler to hold
intermediary results.

Both variable kinds have very different lifetime semantics:
Compiled variables are initialized when a function is entered and
destroyed when it is left. Instructions referencing CVs do not con-
sume the variables, as such it is possible to use the same variable in
multiple instructions. Conversely, temporary variables are not ini-
tialized upfront, instead the compiler ensures that they are only read
after an explicit assignment. If an instruction uses a temporary vari-
able, it is also responsible for destroying its value. Consequently,
temporary variables can only be read once.

In both cases, there exists a strong coupling between value life-
time and storage location, which is one of the main factors dis-
tinguishing a VM variable from a CPU register. For example, this
means that simply copying one variable to another will generally
not preserve program semantics due to changes in value lifetimes.

4. SSA Form in PHP
Most of the analysis passes and optimizations described in the
following operate on SSA form, whose defining property is that
each variable is assigned at most once, while φ-nodes are used
to merge values at control flow join points. We make heavy use
of SSA form, because it greatly simplifies the implementation of
flow-sensitive data-flow analysis passes, such as type inference, and
allows to directly associate data-flow properties, such as inferred
types, with variables, without loss of accuracy.

We implement SSA construction based on the classic algorithm
due to Cytron et al. [5], which places φ-nodes based on iterated
dominance frontiers. The necessary dominator tree is constructed
using the simple data-flow algorithm due to Cooper et al. [39]. To
reduce the number of unnecessary φ-nodes we employ pruned SSA
form: iterative liveness analysis is used to determine live variables
for all basic blocks, and φ-nodes are only placed for variables that
are live-in at the respective block.

To ensure that the SSA form is strict, which means that every
variable use is dominated by its definition, we place an implicit
v0 = undef assignment in the entry block for every compiled
variable v. Use of such a variable (i.e., use prior to initialization) is
allowed in PHP, but triggers a runtime warning.

Due to the issues described in section 3.3, assignments in PHP
have to be treated as both use and definition points of the assigned
variable. While this poses no fundamental problem to the SSA
paradigm, it does significantly change the structure of the SSA
graph and commonly requires special handling in analysis passes.
Figure 6 shows the control flow graph (CFG) for a simple while-
loop with a block-local variable v, using ordinary SSA form (left),
and using SSA form where assignments are treated as both use and
definition points (right). The notation (v1 → v2) = . . . signifies
that the assignment uses the old value v1 and generates the new
value v2. Because the value of v1 does not matter in most cases, we
call this an improper use.

Because our goal is to perform transparent bytecode optimiza-
tions, it is convenient to match the existing bytecode format as
closely as possible when translating into SSA form. For this rea-
son we consider the SSA graph as an overlay structure: each byte-
code instruction is associated with an “SSA instruction” specifying
which SSA variables the three instruction operands use and define.
If an operand both uses and defines a variable, this constitutes an
in-place modification, such as (v1 → v2) += 1 (while the notation
is similar, v1 is a proper use here).

One appeal of SSA form is that it makes it easy to imple-
ment control-flow-sensitive data-flow algorithms. However, there
are cases where the variable splitting performed by SSA construc-
tion is not sufficient to capture some path-sensitive properties. An
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while P

v1 = . . .
. . .
use v1

. . .

v0 = undef

v1 = φ(v0, v2)
while P

(v1 → v2) = . . .
. . .
use v2

. . .

Figure 6. SSA form representation of simple while-loop with
block-local variable v. Left: Ordinary SSA form. Right: Assign-
ments are treated as both use and definition points, introducing an
improper v1 use and requiring the placement of an additional φ-
node.

v1 = . . .
if is int(v1)

use v1use v1

use v1

elseif

v1 = . . .
if is int(v1)

v3 = π(v1)
use v3

v2 = π(v1)
use v2

v4 = φ(v2, v3)
use v4

elseif

Figure 7. Left: Example CFG where control-sensitive type infor-
mation cannot be captured. Right: π-nodes are introduced to artifi-
cially split SSA variables, so that code paths with control-sensitive
type information use distinct names.

example is shown in Figure 7 (left), where v1 must (or cannot)
be an integer only on certain code paths. Because no distinct vari-
able name is associated with these paths, this information is lost if
types are directly associated with variables, rather than (variable,
program point) pairs, as is usual for SSA algorithms.

This problem is solved by artificially splitting variables using
π-nodes, as is shown in Figure 7 (right). A π-node is placed at the
start of both branches, thus creating separate variables v2 and v3,
with which the more precise type information can be associated.
The concept of π-nodes is adopted from the ABCD bounds check
elimination algorithm [14], where π-nodes were used to improve
the accuracy of value range inference, rather than type inference.

5. Static Optimization
Based on the bytecode in SSA form, it is now possible to implement
various analysis and optimization passes, which will be described
in the following. The main supporting analysis is type inference,
which is used for type specialization and plays a supporting role in
constant propagation, dead code elimination and copy propagation.
Finally, inlining is applied to increase the applicability of other
optimizations.

5.1 Type Inference
Nearly all optimizations discussed in the following depend, in one
way or another, on the availability of type information for variables.
As PHP is a dynamically typed language, type information is not
available a priori and instead needs to be inferred. To this purpose
we make use of a generalized variant of the Sparse Conditional
Constant Propagation (SCCP) algorithm [9].

If we abstract SCCP away from the specific application of con-
stant propagation, the algorithm may be briefly summarized as
follows. Each SSA variable is associated with an element from a
bounded lattice (L,v,>). The variables are optimistically initial-
ized to the > value and a monotonic transfer function is evalu-
ated for each instruction, which combines the lattice values of in-
put operands to produce new lattice values for output operands (for
φ-nodes this is the lattice meet). If this changes the value of a vari-
able, all instructions using it need to be reevaluated. Using this pro-
cedure, lattice values are successively lowered until a fixed point
is reached. At the same time, the algorithm keeps track of which
CFG edges are executable given the current lattice state and only
blocks (and φ-operands) that are currently executable will be con-
sidered. Once again, the starting point is an optimistic assumption
that everything but the entry block is not executable. Together this
results in an algorithm that is sparse and optimistic, and combines
data-flow propagation with detection of unreachable code, making
it more powerful than either on their own.

For type inference in particular the lattice may be approximated
as a power set lattice (P(T ),⊇, ∅) over a type universe T . Each
element of the lattice is a set of types S ⊆ T , representing the
possible types a variable might take at runtime. PHP supports eight
fundamental types, namely null, bool, int, double, string, array,
object and resource, where bool may be further subdivided into
the pseudo-types true and false. For arrays we additionally track
the possible key types (only int and string), as well as the possible
value types, to one level of nesting. For objects we optionally store
a specific class/interface type, while distinguishing whether this is
the exact type of the object, or subtypes are allowed as well.

In addition to this proper type information, we also track
whether a variable may be undefined (undef ) or a reference (ref ).
ref also implies a union of all other types (any), as we do not track
the type of reference variables (section 3.5). Variables are initial-
ized to ∅, apart from the implicit variables in the entry block, which
are undef. This lattice allows an accurate description of the possi-
ble types of a variable, with some limitations. In particular, nested
arrays may not be represented accurately and it is not possible to
represent unions or intersections of object types.

For this lattice the meet operation is given by the set union,
while using the lowest common unique ancestor for objects that
specify a specific type. The transfer functions for non-φ nodes
model the (often very complicated) rules for the output types an
instruction may produce given certain input types. The current type
information is also used to determine whether CFG edges are exe-
cutable. Common cases where this is applicable are type-checks of
the form is int($v) or $v instanceof A. However, while
this may eliminate unreachable branches, this by itself does not
make full use of the conditional type information: it does not cap-
ture that inside a branch guarded by is int($v), the variable $v
will be an integer. To make use of this fact, we use π-nodes with
associated type constraints as described in section 4, such that the
variable type is intersected with the type constraint associated with
the π-node.

Type narrowing The type inference algorithm as described, is a
pure forward propagation algorithm: it starts from known type in-
formation primarily in the form of literal initializations and prop-
agates this information forwards through the SSA graph. This is
to be expected, as we are not allowed to infer additional type con-
straints on value sources such as parameters. However, there is one
particular case where modifying the source of a type is both pos-
sible and desirable: While PHP distinguishes between integers and
doubles, programmers commonly initialize variables using integers
(0 instead of 0.0), even if they will only be used as doubles sub-
sequently. This results in unnecessary int|double unions. To avoid
this, after the main type inference pass has finished, we promote
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integer initializations to use doubles if this both eliminates such
a type union and we can determine that the promotion does not
change observable results (e.g., through loss of precision).

Value range inference In PHP, if the result of an integer arith-
metic operation exceeds the integer range, it is promoted to dou-
ble. As such, value range inference is necessary to accurately infer
types on integer operations. We use the intra-procedural portion of
[40] for range inference, which may be briefly summarized as fol-
lows. An interval lattice (Z × Z,wi) with Z = Z ∪ {±∞} is
used, where ±∞ denote under- and overflow and wi is a super-
interval relation. For a fixed number of warmup passes, intervals
are updated based on instruction-specific transfer functions, as in
the type inference algorithm. For variables that have not reached a
fixed point, bounds are then widened to±∞ depending on whether
the variable is increasing, decreasing or both. In a final step, these
conservative bounds are narrowed again, based on π-node con-
straints. These constraints may also depend on other variables (fu-
tures). Widening and narrowing occurs as per [41]. The entire pro-
cedure is not performed on the whole SSA graph at once, but on
its strongly connected components (computed excluding improper
uses) in topological order. This is important both for the efficiency
and precision of the algorithm.

5.2 Constant Propagation
For constant propagation, the SCCP algorithm in its original form
is used, with the lattice elements given by ⊥ v Ci v >, where
> represents an underdefined value (not yet known, may be con-
stant), theCi represent specific constant values and⊥ represents an
overdefined value (not constant). In this case, the important prop-
erty of the lattice meet is that CiuCj = ⊥ for i 6= j, such that two
distinct constants combine into an overdefined value. Variables are
optimistically initialized to >, unless they are implicit (undefined)
definitions in the entry block, in which case ⊥ is used instead.2

SCCP can be directly applied to PHP with only a few additional
considerations: Firstly, we need to ensure that values of (potential)
reference variables are not propagated, as these could change at
any time (within the limits of our model). In most cases this will
be automatically handled correctly, because any instruction that
may produce a reference will produce a ⊥ value during constant
propagation. Only assignments of the form (v1 → v2) = w require
explicit handling: if v1 is ⊥ and type inference has marked it as a
potential reference, v2 should be set to ⊥ as well.

Secondly, PHP has a relatively broad concept of compile-time
constants, that also includes strings and arrays. This is problematic,
because propagation through chains of string or array operations
may degenerate to quadratic space and time complexity, as each
operation needs to copy the result of the previous one. This can
be avoided in general by imposing size restrictions, but for specific
common cases, copies may be avoided altogether by exploiting the
fact that, for linear strands in the SSA graph, only the final value is
significant.

Lastly, because type inference and constant propagation are
based on the same underlying algorithm, it is easy to run both in
parallel by operating on a product lattice. This not only avoids
an ordering problem, but also allows detecting a larger class of
unreachable code than any order or repetition of the individual
algorithms.

5.3 Dead Code Elimination
Dead code elimination (DCE) on SSA form is performed using a
simple worklist algorithm. A set of root instructions is marked as

2 Undefined variables evaluate to null upon use, and could be propagated
as such. However, this would require special treatment of the “undefined
variable” runtime warning.

live and this property is propagated backwards in the SSA graph:
if an instruction is live, then any instruction that generates one
of its operations must also be live. The liveness roots are given
by instructions that may have side-effects, as well as all branch
instructions. There exists a variant of this algorithm [5], which uses
control dependence to also allow elimination of dead branches. We
do not use this variant, as it requires the computation of reverse
dominance frontiers, while only eliminating little additional code.

A major obstacle to performing DCE in PHP is that approx-
imately 95% of all VM instructions have an error condition that
may result in a runtime warning or exception being thrown. In many
cases these error conditions are obscure edge-cases, but nonetheless
they need to be considered as side-effects for the purpose of DCE.
To reduce the number of liveness roots introduced in this manner,
we use the inferred type information to check whether an error may
be triggered for a particular combination of input types.

Some additional problems arise when considering simple as-
signments of the form (v1 → v2) = w. Apart from the obvious
side-effect if v1 is a reference, eliminating such an assignment may
cause a subtle change to destructor semantics. If v1 might have a
destructor, eliminating this assignment could delay its execution.
Conversely, if w might have a destructor, eliminating the assign-
ment could cause it to run earlier. In both cases, the assignment
cannot be removed.

A further problem is posed by the fact that v1 constitutes an
improper use. As such, we do not consider it as a use for the
purposes of DCE, i.e., we do not mark the instruction generating
v1 as live only because the assignment is live. While this approach
is acceptable if v1 is generated by an ordinary instruction, it also
implies that φ-nodes whose result is only used improperly, will be
considered dead on termination of the algorithm. This is not correct
and removing these φ-nodes would violate SSA properties.

To avoid this, the actual elimination of dead instructions is per-
formed in two phases. First, we remove all dead non-φ instruc-
tions. Then, all φ-nodes that are still used improperly are marked as
live and this information is propagated backwards to the φ-sources.
Only after this step can dead φ-nodes be removed.

5.4 Copy Propagation on Conventional SSA
Copy propagation eliminates copy operations of the form v = w
by replacing all uses of v with uses ofw. On unrestricted SSA form
performing copy propagation is very simple, because each variable
is defined exactly once, so we do not have to account for the pos-
sibility of other assignments to v or w. However, performing copy
propagation in this manner breaks conventionality of the SSA form,
by which we mean that related SSA variables are no longer nec-
essarily interference-free (have disjoint live-ranges). Related vari-
ables here refers to the transitive reflexive closure over variables
that occur as source or target in the same φ-node, or are used and
defined by the same operand of an instruction. This partitions the
SSA variables into equivalence classes.

The important property of conventional SSA form is that trans-
lation out of SSA can be performed simply by dropping all variable
subscripts and φ-nodes. Otherwise, the use of an out-of-SSA trans-
lation algorithm is required, which resolves interferences within
one equivalence class. We initially considered using the SSA de-
struction algorithm by Boissinot et al. [42] for this purpose, but
found that its application to a scripting language is problematic,
primarily because precise control over value lifetimes is lost. This
is not only a concern with regards to observable destructor behav-
ior, but can also negatively affect performance: inserting additional
variable copies can result in copy-on-write separation of large data
structures, sometimes causing very large slowdowns. The funda-
mental underlying problem is the strong coupling between value
lifetimes and storage locations.
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For this reason, we restrict copy propagation to cases that main-
tain conventionality. In particular, for an assignment (v1 → v2) =
w1 we require that the variable v2 not be live-out at any modifica-
tion point ofw1 (whereby we mean any use ofw1 that defines a new
wi on the same operand) or live-in at any block that contains a φ-
node using w1. To additionally preserve the direct correspondence
between equivalence classes and non-SSA variables, we further re-
quire that v2 is not used in φ-nodes (unless their result is only used
improperly) and that there are no in-place modifications of v2, such
as (v2 → v3) += 1 (again excluding improper uses).

The necessary liveness checks are performed using the fast SSA
liveness oracle due to Boissinot et al. [43]. Unlike many classical
liveness algorithms, which provide sets of variables that are live
at certain program points, this SSA-based algorithm only answers
queries of the form “is variable v live at program point p?” In broad
terms, the algorithm works by precomputing node sets depending
only on the CFG, and using them to efficiently check whether a
path from p to a use of v exists, which does not leave the subgraph
dominated by the definition of v. A primary appeal of this approach
is that the precomputed information may be invalidated only by
changes to the CFG, but not the SSA graph.

5.5 Type Specialization
Many instructions of the PHP virtual machine need to implement
different behavior depending on the type of the operands. Addi-
tionally, they need to handle a number of unlikely conditions such
as undefined or referenced variables. This is somewhat mitigated
through use of fast-path/slow-path splitting, such that the most
common cases are handled using a minimal number of checks, be-
fore falling back to a generic implementation. Even so, a simple
operation like the addition of two integers still has to perform two
type checks, as well as an overflow check.

To avoid this overhead, we can specialize generic instructions to
type-specific ones based on the inferred type information.3 For the
ADD instruction, one may introduce ADD INT and ADD DOUBLE
operations, which only accept integer/double operands. If value
range inference determines that the result cannot overflow, one can
further specialize ADD INT to ADD INT NO OVERFLOW.

However, this kind of specialization is limited in scope, because
it mostly targets basic arithmetic operations (where type-checks
have large relative overhead) and additionally requires very pre-
cise type information (no type unions). A broader class of special-
izations is obtained by considering higher-level properties, such as
whether a variable may hold a reference-counted value or not. In
particular the types null, bool, int and double never use reference
counting.

In this context, it is important to note that an operation like $c
= $a + $b is compiled into a sequence of two instructions. First
T = ADD $a, $bwill write the result of the addition into a tem-
porary T, and then ASSIGN $c, T will copy this result into the
compiled variable $c. Non-temporary assignment is a separate in-
struction, because it involves complex logic in the general case (de-
stroying the previous value safely, handling reference assignments,
handling overloaded assignment operators, etc.) However, if type
inference determines that $c cannot be reference-counted, both in-
structions may be combined into $c = ADD $a, $b. Similarly
compound assignments like ASSIGN ADD $a, $b may be con-
verted into $a = ADD $a, $b, avoiding various checks related
to in-place modifications.

Other examples of specialization include: Baking object prop-
erty offsets into property fetch instructions, if the object type and

3 Because PHP VM instructions include a pointer to the instruction handler,
this can be done without modifying the VM itself. It is not necessary to
introduce dedicated opcodes, though it may be more convenient.

property are known. Specializing argument sends for the common
case of known defined, non-reference variables. Removing instruc-
tions entirely in some cases, e.g., for casts or type assertions.

5.6 Function Inlining
To reduce function call overhead and improve the applicability of
other static optimizations, we implement a basic function inlining
pass. Inlining occurs prior to SSA construction to avoid the need of
keeping the SSA form representation of more than one function at
the same time.

When inlining a function call, we do not only have to incorpo-
rate the instructions of the called function, but also its variables. For
compiled variables this poses an issue, because such variables stay
alive until the end of a function. To avoid changing program se-
mantics because of this, we have to insert UNSET VAR instructions
after the inlined function body. This also ensures that variables are
in a consistent state on (re)entry into the inlined function body.

While DCE will commonly be able to remove these additional
instructions, it is not always the case. Additionally, all compiled
variables must be initialized on entry into a function and destroyed
on exit. For this reason inlining in PHP comes with additional
overhead beyond the usual increase in program size.

Inlining in the framework of the current PHP implementation
only has limited applicability: Due to the single-file restriction
discussed in section 3.8, we can only inline functions defined in
the same file. Additionally, for method calls the target is usually
only exactly known for private and final methods. Inlining for
virtual methods would require speculative devirtualization [44]. Of
course, inlining cannot be used if either the inlined or inlined-to
function uses overly dynamic language features such as dynamic
scope introspection. Otherwise, the scope of both functions would
potentially be visible.

For the experimental evaluation we used an aggressive inlining
heuristic, which prefers to inline all eligible functions that are not
excessively large (less than 500 VM instructions), to one level.

6. Experimental Evaluation
To evaluate the effectiveness of the optimizations described in the
previous section, we use two sets of micro-benchmarks provided by
the PHP distribution, as well as a small selection of real application
and library code. In all cases, we consider execution time averaged
over many runs and normalized against the baseline execution
time. The baseline is provided by running the tests with SSA-
based optimizations and inlining disabled, but other preexisting
optimizations enabled.

The time to compile and optimize the code is not considered as
part of the execution time. This is representative of practical usage,
because the optimizer is part of the opcache extension and as such
only used if opcode caching is enabled. In this case the compilation
time is amortized across many requests.

The tests were performed on an Intel Core i5-2500K CPU with
8GB RAM running Ubuntu 16.04. For the tests that require a
database backend, MySQL 5.7.13 was used. A web server was not
used.

6.1 Micro-benchmarks
The PHP distribution comes with two sets of standard micro-
benchmarks. The first (bench.php) implements a number of func-
tions that either perform simple algorithms (e.g., computation of
Mandelbrot sets or prime numbers) or certain code pattern (e.g.,
accessing arrays in specific orders). The results for these bench-
marks are shown in Figure 8, with the geometric mean speedup
being 1.26× without inlining and 1.50× with inlining.

We can make a number of observations about these results:
Inlining does not affect most benchmarks, because they only use
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Figure 8. Normalized execution times for standard PHP micro-benchmarks for static optimization without inlining (blue bars) and with
inlining (red bars). Baseline represented as black line, lower is better. The last column is the geometric mean.

a single function. The largest improvements (5.3×) are realized for
simpleu(d)call, where inlining enhances DCE. For the remaining
benchmarks, we observe between 2.2× improvements (mandel)
to no change (ary1-3), depending on what type of operations are
prevalent in the benchmark. Arithmetic optimizes well, while array
manipulation does not.

For the benchmarks where our optimization strategy had non-
zero impact, Figure 9 shows a breakdown illustrating how much the
individual optimizations contributed to the speedup. These results
have been obtained by measuring with only a single optimization
pass enabled. However, to avoid complicating the interpretation
with too much pass interdependence, inlining was always enabled.

The individual contributions do not always sum to one, because
some passes enable others (e.g., transformations performed by as-
signment specialization can support further type specialization),
while others feature some degree of overlap in their effects (e.g.,
copy propagation and assignment specialization sometimes have
similar effects on bytecode).

The second set of micro-benchmarks distributed with PHP (mi-
cro bench.php) are different in nature: they measure the repeated
execution of a single operation, or a combination of very few op-
erations. As such, these benchmarks provide little value, as they
essentially only test whether we can successfully DCE a particular
operation. DCE eliminates the loop body in 10 out of 34 cases. In
the remaining cases we fail to prove that the operation can never
generate a runtime warning.

6.2 Applications and Libraries
As performance improvements on micro-benchmarks commonly
do not translate to realistic workloads, we additionally evaluate
performance using a number of real-world PHP applications and
libraries:

1. Wordpress: A popular blogging platform. Response time for
many sequential executions4 of the WordPress homepage, as
populated by Facebook’s oss-performance tool, is tested. (Ver-
sion 4.2)

2. MediaWiki: The software powering Wikipedia. Response time
for many sequential executions of the Wikipedia page of Barack
Obama, as populated by oss-performance, is tested. (Version
1.26.2)

4 Realized using php-cgi -T1,N, which measures N executions and
discards the first to exclude compilation time.

Application / Library Speedup Speedup (inlining)
WordPress (2.2 ± 0.0) % (3.5 ± 0.0) %
MediaWiki (0.8 ± 0.2) % (1.1 ± 0.2) %
phpseclib RSA enc/dec (17.9 ± 0.1) % same
Aerys Huffman enc (8.0 ± 0.1) % same

Table 1. Benchmark results for applications and library compo-
nents.

3. phpseclib: Library implementing pure-PHP fallbacks for cryp-
tographic primitives. Execution time of encryption and decryp-
tion using RSA with 1024 bit keys is tested. (Version 1.0.3)

4. Aerys: Non-blocking HTTP application server. Execution time
of Huffman encoding is tested. Huffman coding is the computa-
tionally expensive part of the HTTP/2.0 implementation. (Ver-
sion 0.4.3)

The WordPress and MediaWiki applications are highly repre-
sentative of typical PHP web workloads. The phpseclib and Aerys
libraries have been chosen as representatives of computationally
expensive code as it appears in practical settings. This type of code
is uncommon in web-facing code, but appears in back-end process-
ing tasks.

The observed speedup for the different cases is shown in Ta-
ble 1. Without inlining, web applications see an improvement of
1-2%, while for computationally expensive libraries it is 8-18%.
Use of inlining has no effect on the libraries, while WordPress and
MediaWiki both experience a slight additional improvement.

The two libraries have been included in the optimization break-
down in Figure 9, where is can be seen that copy propagation, as
well as assignment and arithmetic type specialization are responsi-
ble for these improvements. Because the execution time difference
for WordPress and MediaWiki is small, it is hard to obtain an accu-
rate runtime optimization breakdown for this case. Instead, we may
consider static optimization statistics, as shown in Table 2. These
statistics refer to all instructions that have been compiled, but not
necessarily executed.

From these statistics, it is evident that for both WordPress and
MediaWiki the most effective optimization is specialization of as-
signments and argument sends (specializing ∼7% of all instruc-
tions). This is not entirely surprising, as assignments and sends
are both a very common instruction type, and their specialization
does not require precise type knowledge. DCE, constant propaga-
tion and copy propagation only become effective if inlining is en-
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Additionally, ref is the fraction of variables that may be references.

abled, in which case they account for 9% of eliminated instructions
for WordPress, compared to 1% if inlining is disabled.

Table 2 also includes type inference statistics for SSA variables
that correspond to compiled variables (non-temporaries). In partic-
ular, the percentage of variables for which the inferred type union
contains a certain number of types is shown, as well as how many
variables are detected as potential references. A graphical version
of these results is presented in Figure 10. There are a number of
observations we can make:

Firstly, the type distribution is relatively similar for WordPress
and MediaWiki. Secondly, approximately 25% of all variables have
no type at all. This implies that these variables are always unde-
fined. The number of such variables is large, because an implicit
always-undefined definition is created in the entry block for each
CV variable to ensure strict SSA form. Thirdly, the type distribu-
tion is bimodal, with approximately 15% of all variables having
exactly one type (i.e., perfect type knowledge), while 50% have 8
types (i.e., no type knowledge).

7. Discussion and Future Work
The results of our experimental evaluation may be briefly summa-
rized as an average speedup of 50% on micro-benchmarks, 13%
on computationally intensive library code and 2.3% on typical web

applications. Clearly all three categories feature very different per-
formance characteristics. Micro-benchmarks are mostly arithmetic,
while applications commonly work on strings and arrays, and have
large I/O components. For this reason some optimizations, such as
specialization of arithmetic instructions, have a major impact on
micro-benchmark performance, but play only a minor role in the
optimization of web applications. In the following, we will discuss
some of the limiting factors of our approach and how they might
be overcome. For this we focus on the web application case, as it is
the practically most important one.

First of all, type inference clearly plays a very important role
in the static optimization of dynamic languages, both because type
specialization is an important class of optimizations, but also be-
cause nearly all other code transformations require some degree
of type information for correctness. For micro-benchmarks we are
commonly able to precisely determine the type of inner-loop vari-
ables and fully exploit this type information through specialization.
For large web applications this is not the case. As Figure 10 illus-
trates, we do not have any type knowledge for approximately half
of all SSA variables.

There are a number of reasons for this. One issue is the single-
file compilation view that is enforced by opcache, as discussed in
section 3.8. Due to this limitation, we do not know any signatures
for functions defined outside the current file and have to pessimisti-
cally assume by-reference argument passing. Any reference vari-
able must be assumed to have any type, and variables derived from
references are likely to inherit this property.

We believe that removing this single-file limitation is important
to advance optimization in PHP, both for inference and other pur-
poses. A more aggressive approach is the introduction of something
akin to HHVM’s RepoAuthoritative mode [45], which requires all
code to be known in advance and forbids certain runtime opera-
tions. This has the advantage that all symbols are known during
compilation. For example, such a mode can guarantee that a cer-
tain virtual method will never be overridden, so the exact callee is
known. On the other hand, RepoAuthoritative mode is known to
significantly complicate the deployment process.

Another limiting factor is that our type inference is function-
local: no inter-procedural inference is performed. It would be pos-
sible to use the Cartesian product algorithm [21] (or a faster variant
thereof) to extend inference across procedure boundaries. However,
applicability would be limited due to both the single-file limitation
and the uncertainty about the callee of virtual method calls.
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Metrics WordPress WordPress (inlining) MediaWiki MediaWiki (inlining)

Instrs 103770 199149 124591 167137
Eliminated instrs (const prop.) 406 (0.4%) 11013 (5.5%) 151 (0.1%) 1109 (0.7%)
Eliminated instrs (DCE) 155 (0.1%) 4756 (2.4%) 147 (0.1%) 3173 (1.9%)
Eliminated instrs (copy prop.) 487 (0.5%) 2198 (1.1%) 421 (0.3%) 1888 (1.1%)
Specialized instrs (arithmetic) 69 (0.1%) 164 (0.1%) 99 (0.1%) 184 (0.1%)
Specialized instrs (assignment) 3873 (3.7%) 9664 (4.9%) 5404 (4.3%) 8222 (4.9%)
Specialized instrs (arg. send) 3712 (3.6%) 5686 (2.9%) 3251 (2.6%) 3983 (2.4%)

SSA variables (CV only), of which 34393 88685 47274 73866
... may be reference 8856 (12.3%) 18513 (20.9%) 12723 (26.9%) 16905 (22.9%)
... may be refcounted 24337 (70.8%) 50549 (57.0%) 31673 (67.0%) 44149 (59.8%)
... have 0 types (undef) 8506 (24.7%) 31070 (35.0%) 12722 (26.9%) 24861 (33.7%)
... have 1 type 5405 (15.7%) 12584 (14.2%) 7140 (15.1%) 11593 (15.7%)
... have 2 types 1562 (4.5%) 3495 (3.9%) 1901 (4.0%) 3017 (4.1%)
... have 3 types 681 (2.0%) 1267 (1.4%) 893 (1.9%) 1464 (2.0%)
... have 4 types 265 (0.8%) 768 (0.9%) 170 (0.4%) 325 (0.4%)
... have 5-6 types 88 (0.3%) 396 (0.5%) 24 (0.1%) 56 (0.1%)
... have 7 types 952 (2.8%) 1827 (2.1%) 663 (1.4%) 1061 (1.4%)
... have 8 types (any) 16931 (49.2%) 34381 (38.8%) 23758 (50.3%) 31306 (42.4%)

Compile time increase 59 ms (50%) 140 ms (120%) 75 ms (37%) 116 ms (58%)

Table 2. Static optimization and type inference statistics for WordPress and MediaWiki, with and without inlining. The SSA variable type
statistics include only compiled variables (CVs), temporary variables are excluded.

We expect that the use of type annotations (section 3.7) will in-
crease as code-bases move to support PHP 7 only, and that type
declaration support will be expanded to more language items, in-
cluding object properties. This will provide more type roots for in-
ference, and in particular alleviate our inability to infer property
types (section 3.5).

However, as PHP is a dynamic language, there will always
remain value sources for which no type is known. One way to
approach this problem is the use of speculation: given a likely
(but not guaranteed) type for a value source, we can generate two
code-paths, one specializing on the chosen type, the other acting
as a fallback. The likely type may be determined either statically,
based on the usage of the value, or dynamically, using runtime type
feedback. An obstacle to a purely static approach is that, without
information about hot functions, such speculation might lead to a
large code size increase.

Next to the difficult problem of inferring accurate types in a dy-
namic language, another significant constraint on static bytecode
optimization is imposed by the need to operate within the limi-
tations of the used virtual machine. It is not possible to perform
overly fine-grained specialization, as this leads to excessive VM
code size growth. Instead, we have to focus on specific instructions
and type combinations that promise to be have the largest effect.
Similarly, splitting instructions in order to allow separate optimiza-
tion of the individual parts, is only possible to a limited degree,
because the additional instruction dispatch overhead quickly over-
shadows any benefit. Indeed, the reverse process of using superin-
structions (which combine multiple instructions into a single one),
is a well-known interpreter optimization [26].

As these problems relate to VM overhead, they can ultimately
only be overcome with a JIT compiler. Work on a new JIT com-
piler for PHP [46], which is based on the SSA-based optimization
framework introduced in this work, is already underway.

8. Conclusion
In this work we have investigated the applicability of purely static,
transparent, bytecode-level optimizations to the dynamic program-
ming language PHP. To this purpose an SSA-based optimization

infrastructure was used, in combination with a type inference algo-
rithm based on SCCP. Implemented optimizations include type spe-
cialization, constant and copy propagation, dead code elimination
and inlining. Our experimental evaluation has shown an average
speedup of 50% on micro-benchmarks, 13% on computationally
intensive libraries, as well as 1.1% (MediaWiki) and 3.5% (Word-
Press) on web applications.

As such, we have demonstrated that static optimization tech-
niques can yield significant improvements even when applied to a
dynamic language. However, these improvements heavily depend
on the characteristics of the application, with computationally in-
tensive code optimizing much better than typical web applications.

The described optimization framework and the specialization-
based optimizations will be part of PHP 7.1. The remaining opti-
mizations depend on inlining to become effective, which requires
further work prior to wide usage (e.g., backtrace preservation). For
this reason, these optimizations target a later version of PHP and
are currently maintained in a fork [47].
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