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Abstract
Single Instruction Multiple Data (SIMD) extensions in processors

enable in-core parallelism for operations on vectors of data. From

the compiler perspective, SIMD instructions require automatic tech-

niques to determine how and when it is possible to express com-

putations in terms of vector operations. When this is not possible

automatically, a user may still write code in a manner that allows

the compiler to deduce that vectorization is possible, or by explicitly

de�ne how to vectorize by using intrinsics.

�is work analyzes the challenge of generating e�cient vector

instructions by benchmarking 151 loop pa�erns with three com-

pilers on two SIMD instruction sets. Comparing the vectorization

rates for the AVX2 and NEON instruction sets, we observed that

the presence of control �ow poses a major problem for the vec-

torization on NEON. We consequently propose a set of solutions

to generate e�cient vector instructions in the presence of control

�ow. In particular, we show how to overcome the lack of masked

load and store instruction with di�erent code generation strategies.

Results show that we enable vectorization of conditional read op-

erations with a minimal overhead, while our technique of atomic
select stores achieves a speedup of more than 2x over state of the

art for large vectorization factors.
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1 Introduction
Code vectorization is an optimization technique to exploit data

level parallelism (DLP). Starting in the 1970s, vector processors

grouped together data independent instructions and applied vector

operations instead of scalar ones. Depending on the Vectorization

Factor (VF), i.e. the number of data elements that can be merged

into one vector, vectorization can reach high speedups, especially

on codes exposing DLP in loops.

However, the task of producing e�cient vectorized code is chal-

lenging. Manual approaches, where the programmer directly indi-

cates which vectorial instruction to use, require huge e�orts and
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produce results that are not portable when targeting di�erent In-

struction Set Architectures (ISAs). �at is why auto-vectorizers

have been added to compilers to perform this task automatically.

As of today, a compiler can contain multiple vectorization passes,

targeting loops and straight line code. During compilation, the

vectorizer has to �nd a valid code transformation which can be

mapped to the underlying ISA. In addition, the transformation has

to be deemed bene�cial, i.e. the added overhead should not e�ace

the performance gain.

Auto-vectorization has made tremendous improvements in the

last decades, with di�erent compiler techniques addressing dif-

ferent forms of parallelism (e.g. Superword-Level Parallelism for

straight-line code vectorization) as well as increasingly complex

code pa�erns. However, the success of vectorization does not purely

depend on the compiler and the code to be vectorized. �e target

ISA plays a key role by providing instructions that enable e�cient

vectorization as well.

�is paper starts with a quantitative and qualitative analysis of

state-of-the-art techniques provided by production compilers (GCC,

ICC, and LLVM) on two di�erent SIMD ISAs, i.e. Intel’s AVX2 and

ARM’s NEON. Investigating 151 loops with a broad range of code

pa�erns, our numbers show that the compilers do not perform ade-

quately on the processor supporting NEON, speci�cally for loops

that contain control �ow. It is a genuine example of a code pa�ern

whose vectorization can be greatly enhanced by the availability of

speci�c instructions, e.g., masked load and store. Unfortunately,

these instructions are missing in the NEON instruction set, there-

fore limiting the vectorization in existing production compilers.

Consequently, we propose two techniques to enable the automatic

vectorization of conditional load and store operations, increasing

the vectorization rates for NEON platforms.

�e contributions of this paper are:

• a detailed quantitative and qualitative analysis of the vec-

torization rate and quality of GCC, ICC, and LLVM on a

test benchmark of 151 loops, targeting AVX2 and NEON

platforms

• an automatic approach to vectorize conditional load opera-

tions where compilers currently fail due to the inability to

assume the safety of memory accesses

• an automatic approach to vectorize conditional store opera-

tions, resulting in an improved code performance compared

to the state-of-the-art scalar predicated store currently em-

ployed in compilers.

Both vectorization techniques can be applied to ARM NEON plat-

forms, as well as other ISAs that do not support masked load/store

instructions natively.

�e paper is organized as follows: in Section 2 we discuss cur-

rent options to handle control �ow for vectorization. In Section

3, we show the results of our analysis of the most popular C/C++

compilers’ auto-vectorizers. A�erwards, we describe the imple-

mentation of conditional load/store operations for the state of the
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Table 1. Overview of compiler �ags and versions

gcc 7.2.0 LLVM 5.0.0 icc 18.0.1

Vectorized Setup -std=(c11|c++11) -O3 -ffast-math -march=native -std=(c11|c++11) -Ofast (-xavx|-xavx2)

Added for Scalar Setup -fno-tree-vectorize -fno-tree-slp-vectorize -fno-vectorize -fno-slp-vectorize -no-vec

Added for Reports -fopt-info-vec-all=report.lst -Rpass=loop-vectorize -mllvm
-debug-only=loop-vectorize,SLP

-qopt-report=1 -qopt-report-phase=vec

art, as well as our new proposed solutions in Section 4. In Section 5,

we show the performance improvements achieved by our proposed

approaches, and the paper is concluded in Section 6.

2 Related Work
Manually programming SIMD units with either intrinsics or in

assembly language is an error prone and time consuming activity,

whose output highly depends on the target architecture. A more

productive and portable alternative is to rely on compiler-based

automatic vectorization (auto-vectorization), which tries to replace

scalar instructions with vectorial ones. Auto-vectorization mainly

relies on two approaches: Loop-Level Vectorization (LLV) [3] and

Superword- Level Parallelization (SLP) [13].

LLV, used since the advent of vector processors [22], is the pre-

ferred technique in today’s compilers due to the potentially low

vector utilization in SLP [18]. In a related study from 2011, Maleki

et al. [14] analyzed the state of the art of the gcc, icc, and XLC vec-

torizers with three di�erent benchmarks. A second study by Mitra

et al. from 2013 [15] performed a comparison of performance gains

on platforms with SSE and NEON SIMD extensions. However, the

authors did not utilize auto-vectorizers, but manually vectorized

the codes.

An important aspect of LLV is the generation of e�cient vector

instructions in the presence of control �ow. Control �ow may di-

verge because a condition might be true for some scalar instances

and false for others, therefore requiring speci�c solutions such as

masking. Allen et al. [2] �rst worked on solving control �ow vectori-

zation by converting control �ow dependences to data dependences.

�ey developed a translator, the Parallel Fortran Converter, which

implemented an if-conversion phase that a�empts to eliminate all

goto statements in the program. Erosa and Hendren [7] introduced

an algorithm that eliminates each goto in control �ows by �rst ap-

plying a sequence of goto-movement transformations followed by

the appropriate goto elimination. Karrenberg [11] describes a multi-

phase algorithm for OpenCL codes where masks are computed for

every edge of the control �ow graph, storing information about the

�ow of control in the function; subsequently, select instructions

that discard results of inactive instances are introduced where nec-

essary. Parts of the control �ow graph where the instances may

take di�erent paths are linearized, i.e., all branches except for loop

back edges are removed and code of originally disjoint paths is

merged into one path.

If-conversions have been used to in the context of improving

instruction level parallelism with (non-vectorial) predicated instruc-

tions as well. August et al. [5] investigated how compilers should

appropriately balance control �ow and predication to achieve ef-

�cient execution, and studied how this is tightly coupled with

scheduling decisions and processor characteristics.

Control �ow issues also arise from irregular codes, which have

been handled with speci�c vectorization approaches; examples are

trees [10], irregular data structures [19], or irregular strides [12].

A�empts to support control-�ow have been investigated also for

SLP vectorization [20].

An alternative approach is the design of be�er programming

models that addresses the code generation of such pa�erns (an

overview of programming models for vectorization has been con-

ducted by Pohl et al. [17]). A particular interesting model is pro-

vided by the ispc compiler [16], which implements special features

for control �ow: masking is handled with an explicit execution

mask and keywords (e.g., unmasked); special support for coherent

control �ow statements (e.g., the cif keyword); an e�cient way

to handle data races within a gang (a group of program instances

running together): any side e�ect from one program instance is

visible to other program instances in the gang a�er the next se-

quence point in the program (for vectorization, this semantic is

more e�cient than OpenCL’s barrier()).

E�cient vectorization also depends on the ISA design. Intel

vectorial instructions [8], for instance, provide masked load and

store [9], which drastically simplify the generation of vector code

in control �ow. �e Scalable Vector Extension (SVE) [21], a novel

instruction set designed for HPC workloads on ARMv8-A, empha-

sizes the importance of predication for vectorization with dedicated

predication registers to e�ciently handle active and inactive lanes

of non-�xed-length vectors. Unfortunately, the current NEON in-

struction set [4] does not have similar features, and is lacking the

masked load and store operations present in AVX2. �is work starts

from the observation that this is a major problem for vectoriza-

tion and requires di�erent code generation strategies in order to

produce e�cient vectorized code.

3 Vectorization Analysis
3.1 Experimental Setup
To understand the state of the art of the most popular C/C++ com-

pilers’ auto-vectorizers, we ran a set of benchmark kernels on x86

and aarch64 architectures which support Intel’s AVX2 or ARM’s

NEON vector instruction set. For this purpose, we used one of the

benchmarks from Maleki et al.’s related study.

�e Test Suite for Vectorizing Compilers (TSVC) [1] was orig-

inally published by Callahan, Dongarra, and Levine in 1988 and

contained 135 Fortran loops [6]. �ose were ported to C, outdated

language constructs were removed, and 23 loop pa�erns were added

[14]. Currently, the benchmark consists of 151 basic loops, grouped

and numbered by vectorization challenge, such as loop peeling,

statement reordering or data dependences. In TSVC, each loop

itself contains only a few statements, i.e. loop bodies are short

in terms of instructions. �is synthetic setup is needed to test

vectorization for very speci�c code pa�erns.

In our assessment, we used three popular C/C++ production

compilers: the Gnu Compiler Collection (gcc), the Intel C Compiler

(icc), and LLVM using the Clang frontend in their respective latest
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version (see Table 1). Only standard compiler �ags were applied for

benchmarking, and no further code annotations were added with

the exception of pragma annotations to enforce data alignment.

However, we did use a debug build of LLVM’s release to obtain

detailed vectorization reports. An overview of the compiler setups

is provided in Table 1.

�e most commonly used SIMD extensions today are Intel’s

AVX2 and ARM’s NEON. Although newer SIMD extensions have

been introduced, they are not yet commonly available. For exam-

ple, Intel’s AVX-512 is only available on their Xeon Phi platform,

while ARM’s successor of NEON, SVE, has been announced, but

no product is on the market yet.

We therefore chose a server and a desktop processor with AVX2,

as well as an embedded processor supporting NEON. �e pro�led

server processor is an Intel Xeon E5-2679, while the desktop pro-

cessor is an Intel i5-7500. Both support 256 bit �oating point and

integer operations, i.e. a vectorization factor of 8 is the maximum

for our single-precision �oating point benchmark. Choosing two

processors with the same SIMD extension furthermore allows us

to compare di�erent implementations of the same instruction set

and analyze their impact on vectorization rate and quality. Due to

the backwards compatibility of x86 architecture, we were also able

to run the benchmark targeting the older SSE4.2. �ese results are

useful to understand if the progress in vectorization stems from an

improved compiler, or an improved hardware ISA when comparing

to previously published analysis numbers.

In order to compare the x86 results with a NEON ISA, we ran the

benchmarks on an ARM Cortex-A53 as well. �is ARMv8 architec-

ture supports 128 bit vector operations, i.e. a maximum vectoriza-

tion factor of 4 for single-precision �oating point operations. Since

the icc compiler does not generate code for aarch64 architectures,

we only present gcc’s and LLVM’s results for that hardware. All

numbers are generated on a single core without further paralleliza-

tion techniques that could overshadow the vectorization results,

for example multi-threading.

3.2 Vectorization Rate
�e �rst metric to analyze is the vectorization rate, i.e. the number

of loops that have been vectorized. Here, we test if a compiler is

able to �nd a legal code transformation to vectorize a pa�ern. �is

incorporates the code analysis, transformation and a pro�tability

analysis. For each compiler, results may vary across platforms due

to the di�erent underlying ISAs. For example, a certain instruction

type can be essential for vectorization, but it may not be supported

on all platforms. �e ISAs also impact the pro�tability analysis. For

example, larger SIMD vectors can allow for a bigger VF, which can

result in a vectorization to be pro�table despite the added overhead.

�e obtained vectorization rates, sorted by TSVC’s pa�ern groups,

are shown in Table 2. In this table, we listed the number of vector-

ized loops for the AVX2 and NEON instruction set (if applicable), as

well as the average speedup for the vectorized loops. As a compari-

son, we furthermore added results for the SSE4.2 extension, which

highlights the progress made in vectorization due to improved

SIMD ISAs.

Out of the 151 TSVC loop pa�erns, GCC is able to vectorize 64

loops for SSE4.2 (42%), 72 loops for AVX2 (48%), and 63 loops on the

A53 (42%). In the related study from 2011, GCC was able to vectorize

59 loops (39%) on an Intel Nehalem i7 processor, utilizing the SSE4.2

SIMD ISA. It therefore shows an improvement in the compiler’s
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Figure 1. Vectorization rates of the TSVC benchmark, classi�ed by

speedup factor

auto-vectorization by 3%. However, Maleki et al.’s numbers are

not solely based on the vectorization reports, but also on resulting

speedup. A loop is considered vectorized if a speedup of at least

15% is achieved. In contrast, we base our analysis on the compilers’

vectorization report and therefore capture codes that do not bene�t

from vectorization or even exhibit a slowdown. Nonetheless, we

classi�ed our results by speedup factor as well, but limited this

analysis to the current SIMD extensions AVX2 and NEON. �e

results are depicted in Figure 1. Assuming the same minimum

speedup factor of 1.15 and removing loops that exhibit slowdowns

or scalar performance, gcc is able to vectorize 58 loops on the E5

(44%), 67 loops on the i5 (44%), and 59 loops on the A53 (39%).

�e vectorization rates of icc are signi�cantly higher than gcc’s.

It is able to vectorize 107 loops (72%) for SSE4.2 and 108 loops (72%)

for AVX2 on the i5 platform. For SSE4.2, this marks an increase

from 90 to 96 bene�cially vectorized loops, i.e. +6%. However,

the vectorization rate is not the same for AVX2 on the E5 Xeon

platform. Here, only 99 loops (66%) are vectorized. When looking

at the performance classi�cation in Figure 1, it can be seen that

the number of loops that were vectorized but show now speedup

is higher on the i5 platform, reducing the di�erence in bene�cial

vectorization to four loops. A further analysis of the runtimes show

that these di�erences are indirect adressing pa�erns, which were

not deemed bene�cial on the E5 platform, but on the i5. LLVM’s

vectorization rates are also higher than the ones achieved by gcc’s,

albeit not as high as icc’s. It is able to vectorize 63 loops for SSE4.2

(42%), 76 loops for AVX2 (50%), and 66 loops on the A53 (44%).

Applying the metric to �lter loops with speedup only, 67 loops are

pro�table on the E5 (44%), 68 on the i5 (44%), and 58 on the A53

(38%). Furthermore, LLVM produces the highest rate of slowdowns

on the AVX2 architectures. An analysis showed that this is likely

due to a bug in the address calculation scheme of the scalar fall-back

option.
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Table 2. Number of vectorized pa�erns sorted by pa�ern groups for three di�erent SIMD extensions; numbers in parentheses indicate

average speedups on the E5-2679 and Cortex-A53, respectively

LLVM gcc icc

Pa�ern Group Pa�ern IDs # SSE4.2 AVX2 NEON SSE4.2 AVX2 NEON SSE4.2 AVX2

Dependences 11*, 14* 15 7 (1.52x) 7 (1.49x) 7 (2.81x) 7 (2.16x) 8 (1.78x) 8 (2.52x) 10 (1.90x) 8 (2.02x)

Induction Var Recognition 12* 8 3 (1.59x) 4 (1.49x) 3 (2.90x) 5 (1.50x) 5 (1.55x) 5 (1.94x) 5 (1.53x) 4 (1.62x)

Data Flow Analysis 13*, 15* 4 3 (2.22x) 3 (2.00x) 4 (3.45x) 2 (2.38x) 2 (3.89x) 3 (2.79x) 4 (2.38x) 4 2.91(x)

Control Flow 16*, 27*, 44*, 48* 22 1 (0.87x) 11 (1.46x) 2 (1.25x) 4 (2.06x) 4 (2.59x) 4 (1.70x) 18 (1.66x) 18 (1.77x)

Symbolic Resolution 17* 6 5 (2.38x) 5 (2.41x) 5 (3.79x) 3 (2.22x) 3 (2.54x) 3 (3.07x) 3 (2.59x) 3 (2.71x)

Statement Reordering 21* 3 — — — — — — 3 (1.68x) 3 (1.62x)

Loop Distribution 22* 3 1 (2.94x) 1 (2.95x) 1 (4.38x) 1 (2.91x) 1 (2.89x) 1 (0.81x) 3 (1.31x) 3 (1.40x)

Loop Interchange 23* 6 1 (1.04x) 1 (1.03x) 1 (1.04x) 3 (2.79x) 3 (4.09x) 3 (2.08x) 4 (1.49x) 4 (1.43x)

Node Spli�ing 24* 6 2 (1.62x) 2 (1.71x) 2 (2.07x) 1 (1.65x) 1 (1.92x) 1 (1.99x) 6 (2.08x) 6 (2.13x)

Scalar/Array Expansion 25*, 26* 12 5 (1.52x) 6 (1.66x) 5 (3.10x) 3 (1.36x) 3 (1.46x) 3 (1.69x) 6 (1.78x) 6 (1.73x)

Index Set Spli�ing 28* 2 1 (1.57x) 1 (1.62x) 1 (1.88x) 1 (1.83x) 1 (1.85x) 1 (1.87x) 1 (1.70x) 1 (1.63x)

Loop Peeling 29* 3 — — — — — — 2 (2.54x) 2 (2.61x)

Diagonals 210* 3 1 (1.00x) 1 (1.00x) — 1 (1.00x) 1 (1.00x) — 1 (1.00x) 1 (0.99x)

Reduction 31*, v* 28 18 (11.75x) 19 (15.93x) 18 (3.91x) 20 (6.91x) 22 (12.08x) 19 (2.84x) 23 (3.00x) 22 (4.68x)

Search Loops 33* 2 — — — — — — 1 (1.91x) 1 (3.25x)

Loop Rerolling 35* 4 4 1.43(x) 4 (2.48x) 4 (1.76x) 2 (1.75x) 2 (1.80x) 2 (2.54x) 2 (2.04x) 2 (1.85x)

Indirect Addressing 411* 6 — — 2 (1.88x) — 5 (2.46x) — 4 (1.37x) —

Statement Function Calls 412*, 47* 2 2 (1.48x) 2 (1.56x) 2 (2.75x) 2 (1.60x) 2 (1.88x) 2 (2.29x) 2 (1.78x) 2 (1.62x)

Equivalencing 42* 5 5 (1.49x) 5 (1.49x) 5 (2.01x) 5 (2.11x) 5 (2.03x) 5 (2.99x) 5 (1.97x) 5 (2.24x)

Parameters 43* 1 1 (2.19x) 1 (2.11x) 1 (3.98x) 1 (1.91x) 1 (2.24x) 1 (2.88x) 1 (2.55x) 1 (2.33x)

Intrinsic Functions 45* 3 3 (1.77x) 3 (6.81x) 3 (3.17x) 3 (2.55x) 3 (31.0x) 3 (3.15x) 3 (2.95x) 3 (3.84x)

Other 32*, 34*, 49* 7 — — — — — — — —

Sum 151 63 76 66 64 72 63 107 99

Overall, the results also show that there are pa�ern groups that

are not vectorized by any compiler (recurrences, packing, and vector

semantics) and pa�ern groups that were vectorized by only one

compiler (statement reordering, search loops) or only for speci�c

platforms (indirect addressing). We will discuss further details for

the di�erences in target hardware in section 3.4.

3.3 Vectorization�ality
Apart from the vectorization rate and the speedup classi�cation,

the execution times must be examined in more detail. �is is neces-

sary because speedup is a relative measure, i.e. it is related to the

scalar code execution time. Hence measuring the average speedup

provides an insight of how well a compiler can improve its own

scalar code. However, this metric is not suitable to compare the

quality of the produced code with the results from other compilers

since they do not share the same baseline. We therefore calculated

the geometric means of all loop execution times, including the non-

vectorized ones. Including all test loops is critical because each

compiler vectorizes a di�erent subset of pa�erns (a trait that we

will discuss in section 3.4). With these numbers, it is possible to

determine an average speedup factor that the compiler can achieve.

It is also possible to compare these numbers to a common baseline

and we chose GCC’s scalar execution time for this purpose. �e

results are presented in Figure 2.

�e measurements show that ICC is signi�cantly be�er for the

basic loop pa�erns of TSVC on x86 platforms, which is consistent

with the vectorization rate analysis from the previous discussion.

Furthermore, GCC is ahead of LLVM for x86 platforms, but shows

comparable performance on the ARM processor.

3.4 Di�erences between AVX2 and NEON Vectorization
�e subsets of TSVC loops that are vectorized depend on the com-

piler and the target ISA, while our analysis of vectorization rates in

Section 3.2 indicates that di�erent implementations of the same ISA

only have a minor impact. �e only exception is icc with a di�erent

bene�t analysis for indirect addressing schemes when vectorizing

for AVX2. In our case, only gcc vectorized one loop more on the E5

platform, and icc did not vectorize indirect addressing pa�erns on

the E5. Both compilers decided to forgo vectorization due to their

cost models deeming the transformation not bene�cial. It indicates

that the vectorizers are able to �nd correct code transformations,

however. Otherwise the same set of loops was vectorized on the two

AVX2 platforms, although with di�erent speedups. Nonetheless,

there are signi�cant di�erences between the compilers and their

vectorization rates for the two instruction sets. �ese di�erences

are depicted with a set of Venn diagrams in Figure 3.

When looking at the AVX2 ISA, icc is able to vectorize signif-

icantly more loops than its two competitors (108 vs. 72 and 76,

respectively). However, there are a few loops that either gcc (3)

or LLVM (5) can vectorize, but where icc fails. �ese pa�erns re-

quire certain dependence testing or loop-rerolling to be vectorized.

LLVM, for example, is able to vectorize the unrolled loops with its

SLP vectorization pass.

�e di�erence in the vectorization algorithms of gcc and LLVM

shows for both ISAs, AVX2 and NEON. In both cases, either com-

piler is able to vectorize 10-15 codes exclusively. When examining

the pa�ern types of these exclusively vectorized loops, it is not

possible to narrow them down to speci�c groups. As ICC does not

compile for ARM ISAs, such a comparison cannot be performed.

When looking at the vectorization rates of each compiler for

the two SIMD ISAs, the results show that it is signi�cantly lower
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for the NEON platform. GCC vectorizes 9 loops only on the AVX2

processor, but none exclusively for the NEON ISA. LLVM is able

to optimize 14 loops on AVX2 only, and 4 exclusively on the ARM

processor. Two of the four loops on ARM have indirect addressing

pa�erns. Another interesting observation is that for both compilers,

13 out of the 14 patterns which were exclusively vectorized
on AVX2 contain control �ow. �is shows that both compilers

are able to �nd a vectorization in general, but either cannot imple-

ment it with the NEON instruction set or deem it not bene�cial.

4 Control Flow Vectorization
Based on the observation that loops with control �ow are only

vectorized for AVX2 ISAs, we analyzed the LLVM compiler to un-

derstand the limitations regarding the NEON instruction set.

4.1 State of the Art in LLVM
Listing 1 presents a basic loop containing control �ow.

Listing 1. Basic loop containing control �ow

i n t cond [ n ] , i n [ n ] , out [ n ] ;

. . .

f o r ( i n t i = 0 ; i < n ; i ++){
i f ( cond [ i ] ) {

out [ i ] = i n [ i ] + 1 ;

}
}

In this example, the value of cond[i] determines if the following

basic block is executed. As a consequence, the memory operations

to read in[i] and write out[i] are executed conditionally, i.e. they

are not performed for every loop iteration. �e same applies to the

arithmetic operation of in[i]+1. To vectorize such a code pa�ern,

the compiler thus has to

1. conditionally read data

2. vectorize the arithmetic operations within the basic block

3. and conditionally store data.

�ese three steps can be solved independently within the compiler.

In general, the second step of vectorizing the arithmetic operations

is the same as for every other basic block or loop body and therefore

does not require any modi�cations to the compiler. �is is not the

case for the memory operations. Here, three speci�c techniques

are available:

• scalarizing

• hoisting/sinking

• and masking.

For load operations, scalarizing means a gathering of single data

elements and aggregating them into a vector before applying the

vectorized arithmetic operations. A scalarized store will use a

regular store operation to write back only those elements of loop

iterations where the conditional will hold true. It can be used with
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any type of load operation, i.e. a vector load, masked load, or

scalarized load. A scalarized load, however, requires a scalarized

store and adds a signi�cant overhead, which is why it is currently

not used in LLVM.

Hoisting and sinking are further options currently utilized by

LLVM. Hoisting a load is a technique to move memory read oper-

ations outside (above) the predicated basic block. �is is done if

the memory location is either read outside of the predicated block

anyway, or if it is accessed in both branches of an if-then-else state-

ment. In both cases, the compiler can assume that it is always safe

to access this memory location and it can perform a vector load.

�e same conditions apply when sinking a store. If the memory

location is wri�en to outside of the predicated block, or a value is

assigned to it in both cases of an if-then-else statement, the store

instruction can be moved outside (below) the basic block; it is sunk.

Since the memory accesses are no longer predicated a�er being

hoisted/sunk, they can be vectorized. An example where hoisting

and sinking can be applied is shown in Listing 2.

Listing 2. Example of a loop where hoisting and sinking of memory

operations can be applied

i n t cond [ n ] , i n [ n ] , out [ n ] ;

. . .

f o r ( i n t i = 0 ; i < n ; i ++){
i f ( cond [ i ] ) {

out [ i ] = i n [ i ] + 1 ;

}
e l s e {

out [ i ] = i n [ i ] − 2 ;

}
}

Nonetheless, further instructions, such as a select or vector shuf-

�ing, might be required to obtain the correct write-back data. In

the shown example, a write back vector has to be created from the

results of the if and else branches.

�e third, and most straight-forward approach, are masked load/

store operations. �ese vector instructions accept as an argument

a binary mask that de�nes which elements of a vector should be

read from/wri�en to. �ey thereby assure that only these mem-

ory locations will be accessed or modi�ed. However, this class

of instructions is not available for all SIMD extensions. In our

case, the AVX2 based platforms support them, while the NEON ISA

extension does not. �is is the root cause for the di�erence in vec-

torization rates on the two platforms, which we observed in section

3.4. Besides the missing masked operations for NEON, LLVM was

not able to apply hoisting of read instructions to the benchmark

codes. If the read operation is not vectorized, however, LLVM will

not apply a partial vectorization of the basic block, for example by

performing a scalarized load, vectorized arithmetic instructions,

and a sunk store. As a consequence, most of the control �ow loops

were not vectorized for the NEON platform.

4.2 Vectorizing Load Operations for NEON
�e challenge with vectorizing predicated load operations is to

identify if it is legal to access all memory locations within the vector,

which is the rationale behind load hoisting. If this is not possible

and masked load operations are not available, the programmer can

annotate the code by using pragmas such as #pragma clang loop
vectorize (assume safety). �is pragma explicitly declares

mem

cond[i]

in[i]

d0 d1 d2 d3 d4 d5 X X ...

1 1 0 1 1 1 0 0
...

d0 d1 d3 d4 d5

i

Figure 4. Example of using a conditional statement to mask out

memory read accesses

all memory accesses to be safe and will result in a hoisted load.

However, this is not an automatic approach and requires insight,

knowledge and e�ort by the programmer. We therefore present an

automatic methodology that does not rely on pragma annotations,

but can be applied to any predicated load operation.

Figure 4 shows an example of a conditional load, where the con-

ditional statement is used to mask out memory accesses. In this

example, it is safe to access all six elements of in[i] if they are

located in the same memory page. �at does not mean that all

elements have to be accessed, as shown for data element d2, where

the conditional resolves to false despite the element being present

in memory. For indices of i > 5, the kernel does not have access

permissions for in[i] and the content of mem is unde�ned (X ). Try-

ing to access the successive element of d6 would therefore lead to a

memory access violation. Hence the conditional statement cond[i]
prevents these accesses by masking out all memory accesses for

larger indices. However, when vectorizating this code, such a tran-

sition from legal to illegal memory accesses can lie within a vector.

Assuming a vectorization factor of four for the example, the second

vectorized load would try to access elements d4 − d7, where trying

to read the la�er two can lead to access violations during execution.

Nonetheless, information such as the size of the loaded array is

not necessarily present and thus cannot be statically evaluated.

�e same applies to the trip count of the loop, i.e. the number

of iterations. We therefore propose adding a runtime check for

each vectorized loop execution to assess if it is safe to perform a

vector load based on the evaluated conditional cond[i], which is

independent of the input array sizes or loop iteration counts.

For our approach, we make the following two assumptions:

• allocated memory is contiguous, i.e. an array is stored in a

contiguous memory region without gaps or jumps

• accesses to memory can be expressed as a linear a�ne ex-

pressions, i.e. addresses are strictly increasing or decreasing.

Both of these conditions can be statically identi�ed by the compiler

today. As a �rst step to determine if it safe to perform a vector

load, it needs to be understood how the vector elements are located

in memory. For example, if all vector or array elements lie within

one page of memory, it is safe to perform a vector load if at least

one conditional evaluates to true. If all vector elements lie within

two consecutive pages of memory, the �rst and last element of

the conditional mask need to be set. In other words, per page of

memory that is accessed within a vector, at least one conditional

mask element needs to evaluate to true. To enable a vectorized load,

a runtime check to test the conditional mask for a speci�c pa�ern

can then be created based on the individual memory access pa�ern.

�ese masks could potentially be tuned to each individual kernel,
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e.g. by determining the iteration with a page break and spli�ing the

loop accordingly at runtime to allow for a simple conditional check.

However, this can also introduce signi�cant overhead, which needs

to be evaluated further. We therefore initially limit our approach

to pa�erns where all vector elements lie within one or two
pages of memory. Handling the case of all vector elements in two

memory pages is the more generic approach and works for the �rst

case, all elements in one page, as well. �is approach can be applied

if the compiler can determine a constant distance between vector

elements of less than
paдesize
n ·distance . In this case, it is su�cient to test

if the �rst and last element of the conditional evaluates to true (or

at least one element per page, which would have to be checked at

runtime, thus adding more overhead). �is is shown in Listing 3.

Listing 3. Proposed runtime check to enable partial vectorization

of conditional read operations for vectors whose elements lie within

two pages of memory

vec cond v [ n ] ;

cond v = . . .

i f ( cond v [ 0 ] & cond v [ n−1 ] )

do vec ;

e l s e

d o s c a l a r ;

}

First, the conditional vector cond v is calculated for VF loop itera-

tions. If it evaluates to true for the �rst and last iteration/element,

cond v[0] and cond v[n-1] in the example, it is safe to vectorize

the load and the vectorized code block can be executed. If it eval-

uates to false, it falls back to scalar code execution. �e overhead

added is therefore a straight forward binary test of one and opera-

tion per VF loop iterations. However, the conditional calculation

is still vectorial, and our results in Section 5 show that it compen-

sates the 3% of added overhead.When assuming a probability of 50%

for the conditional to evaluate to true, the bene�t of vectorization

outweights the performance impact of the added runtime check

by far, especially for kernels with a high arithmetic intensity. Fur-

thermore, the compiler is able to determine if adding overhead can

be compensated by vectorization through its cost analysis, as the

runtime check is static and does not depend on the basic block’s

code.

However, for small distances between elements, e.g. a consec-

utive access as shown in Figure 4, a page break within a vector

will rarely occur. Here it would be su�cient to test if at least one

element in the conditional mask evaluates to true for the majority

of iterations. In such cases, it is more e�cient to determine the

number of iterations within a memory page based on the start

addresses of the read vectors and split the loop accordingly. �is

will add overhead at runtime, but this calculation is executed only

once per accessed memory page. With this additional calculation,

a simple runtime check of (|cond v) su�ces to determine if the

vectorized code should be executed; otherwise, the next vector

iteration can be evaluated.

With these proposals, it is possible to vectorize load operations

on architectures without masked load instructions, such as proces-

sors supporting NEON. �e approach is automatic and does not

require code annotations or further code analysis, while adding

limited overhead that is compensated by the vectorized conditional

calculation. However, the approach is only applicable to loops

where the stride between vector elements can be determined.

4.3 Vectorizing Store Operations
As mentioned in Section 4.1, there are three techniques available for

conditional store operations: using scalar predicated stores, sinking

the store or applying masked store instructions. Sinking the store

is dependent on the code and cannot be applied in general, while

masked store store instructions are not available for all architec-

tures, such as those supporting NEON. As a consequence, the scalar

predicated store is the only globally applicable technique to foster

conditional store instructions. But for the NEON instruction set,

we have implemented an additional option: the select store.
�e idea stems from the fact that the NEON instruction set

supports select instructions, which merge two vectors based on a

binary mask. Using the loop in Listing 1 as an example, the select
store is implemented in a read-modify-write sequence:

1. the original data of out is read from memory with a vector

load for the next VF elements

2. the results of the basic block, i.e. in[i] + 1, are caculated

for VF iterations

3. a write back vector is determined by merging the results of

the basic block and the orginal values of out that were read

in the �rst step, using the conditional cond v as a select

mask

4. the write back vector is wri�en to memory with a vector

store, overwriting all data elements in memory.

Listing 4 shows how to transform a masked store to a select store.

Listing 4. Example of transforming a masked store to a select store
vec cond v [ n ] , r e s u l t v [ n ] , o u t v [ n ] ;

/ / masked s t o r e

m a s k e d s t o r e (& out v , cond v , r e s u l t v ) ;

/ / s e l e c t s t o r e

vec tmp v [ n ] , wb da ta v [ n ] ;

tmp v = v e c l o a d (& o u t v ) ;

wb da ta v = s e l e c t ( cond v , r e s u l t v , tmp v ) ;

v e c s t o r e ( wb data v ) ;

}

In order to apply a select store, it must be safe to read the data before

modifying it. With our approach of vectorizing load operations

based on the evaluated conditional, we can guarantee this safety.

However, updating the data/writing in memory has an additional

set of requirements. As long as the loop is executed in a single

thread, it is safe to apply the above select store approach. But as

soon as multi-threading is applied, it cannot be guaranteed that

other threads do not access those data elements masked out by the

conditional. In those cases, data of a masked out iteration could be

modi�ed a�er the read, but before the write back of the select store.
As a consequence, the select store would overwrite elements with

outdated content, causing corrupt data in memory. One way to

avoid such scenario is to ensure that each thread processes a chunk

of the loop that is a multiple of the vectorization factor. One options

is annotating the code, for example by using the OpenMP pragma

pragma omp parallel for (kind, chunk size). However, code

annotation means that the approach is no longer fully automatic.
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Figure 5. Performance comparison of di�erent options to implement conditional store for loops with control �ow, measured on the

Cortex-A53 with VF = 4

We therefore implemented another option: making the sequence of

read-modify-write atomic. �is atomic select store is translated to

a load-acquire-store-release loop and a bit select instruc-

tion in the compiler. Due to the restrictions of atomic operations, it

is now not possible for other threads to modify the data processed

by the locking thread. It therefore ensures data coherency and the

atomic select store can be applied automatically to all loops where it

cannot be ensured at compile time that the program is either single

threaded or the chunk size is a multiple of the VF.

Atomic operations do come with an overhead, however. We thus

compared the performance of the select store, the atomic select store,
and the – already existing – predicated scalar store. �e results will

be discussed in the next section.

5 Results
5.1 Overhead Analysis for Conditional Load Operations
�e goal of our approach is to enable the vectorization of loops while

adding only a minimal overhead. We therefore need to analyze

three aspects in particular:

• the overhead added

• the worst case performance

• the best case performance

�e overhead can be assessed when the vectorized code is never

executed, i.e. when the test of (cond v[0] & cond v[3]) always

evaluates to false and the fall back option of scalar code is executed

for all loop iterations. To test this scenario, we used kernel pa�ern

s271, shown in Listing 5.

Listing 5. Kernel for overhead analysis of conditional load

/ / code p a t t e r n s271

f o r ( i n t i = 0 ; i < n ; i ++){
i f ( b [ i ] > 0 ) {

a [ i ] += b [ i ] ∗ c [ i ] ;

}
}

Furthermore, we set all values of b to zero and implemented two

intrinsics based versions of the code, one with and one without the

added runtime check; both versions use a scalar predicated store.

�e measured execution times show that the runtime check adds

an overhead of merely 3%. �is number is based on the vectorized

calculation of b[i] > 0. For regular scalar code, each element

would be evaluated separately, and the three percent overhead

added by the runtime check will be compensated by the vectorized

conditional calculation.

To emulate the worst case scenario, we set the values in b so the

conditional statement would evaluate to the pa�ern

cond = {1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1...}
Here, the full overhead of vectorization is added for each iteration,

although only half the number of elements per vector are executed.

However, the vectorized version including the runtime check still

achieves a speedup over scalar code of 1.34x.

�e best-case scenario is when the vectorized code is always

taken, i.e. the full advantage can be taken from the vectorized code.

For this purpose, all values of b were set to values greater than

zero. We also enabled the auto-vectorizer to vectorize the loop

by annotating the code so that load hoisting could be performed.

When comparing the execution times, we are almost able to reach

the auto-vectorizer’s performance (a speedup of 1.91x vs 1.79x). So

although we are exploiting the full speedup potential, we are able to

vectorize loops that are currently not vectorized. Hence we achieve

a signi�cant speedup over state of the art with our approach.

�ese numbers are generated with the straight-forward code

pa�ern shown in Listing 5. For even simpler pa�erns, the overhead

might be slightly higher. However, the overhead is static, as the

conditional check does not depend on the actual kernel code within

the basic block. For kernels with a higher arithmetic intensity, the

percentage of overhead will therefore decrease further.

5.2 Performance Comparison of Select Store Operations
Out of the 13 loop pa�erns containing control �ow that were not

vectorized, three of them could be vectorized a�er ensuring the
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safety of hoisting the load via code annotation. We therefore limited

our performance analysis to the remaining ten loops and bench-

marked the codes a�er compiling them with a modi�ed LLVM to

apply our select store and atomic select store techniques. Figure 5

shows the results of this analysis.

For all loops, the select store approach outperforms the scalar
predicated store and the atomic select store. �e achieved speedup is

higher by at least 5%, and for some pa�erns, it is up to a factor of 2x

be�er. Hence it is always recommendable to apply this technique

when a code is executed in single-thread mode, or a thread chunk

size of a multiple of the VF can be guaranteed.

For multi-threaded applications where this cannot be ensured,

the scalar predicated store and the atomic select store need to be

compared. �e �gure shows that the performance of the two is

comparable for most of the loops, with the atomic select store being

slightly behind the performance of the scalar predicated store. �is

is due to the overhead added by making the instruction atomic.

Furthermore, there are loops (s279, s1279, and s2710), where both

approaches show a slowdown. Here, the pro�tability analysis of the

compiler fails and code is vectorized despite an overhead e�acing

all performance gains.

It must be noted that all speedup measurements are relative to the

scalar code performance and depend on the branching probability,

its distribution and the vectorization factor. We therefore performed

a second evaluation to understand these factors be�er in the next

subsection.

5.3 Pro�tability Analysis
�e focus of this work has been to enable auto-vectorization of loops

containing control �ow for architectures without native support for

masked instructions. As seen in Figure 5, however, vectorization is

not necessarily pro�table. We therefore analyzed the pro�tability of

our approaches as well and identi�ed the key contributing factors

as:

• the largest vectorized data type: the available vector reg-

isters have a �xed length, e.g. 128 bit for the Cortex-A53.

�e data type therefore directly impacts the maximum pos-

sible vectorization factor, which again impacts the possible

speedup. So far, all results are based on single-precision

�oating point arrays, i.e. vectors of 4x32 bit. For this analy-

sis, we scale the dataypes from characters (8 bit, VF = 16)

to double precision �oating point (64 bit, VF = 2).

• the branching probability: when vectorizing basic blocks

with control �ow, iterations will be executed that are masked

out by the conditional statement. �eir results will be dis-

carded before the write back. �erefore, when an if-branch

is rarely taken, the vectorized code might not be bene�cial

due to the redundantly executed iterations. In the experi-

ment, we scaled the branching probability from 0% to 100%

assuming an interleaved scheme, i.e. for a ratio of 25%, one

out of every four iterations was set to be taken.

• the arithmetic intensity: vectorization in general adds

overhead. For example, an aggregation of vector elements

might be needed. �us it can be faster to execute code

scalarly, especially if there are few arithmetic operations

that can be sped up within the processor. To understand

this impact, we executed our analysis with two di�erent

kernels showing a varying arithmetic intensity. �ey are

shown in Listing 6.

Listing 6. Kernels with di�erent arithmetic intensity for pro�tabil-

ity analysis

type cond [ n ] , a [ n ] , b [ n ] , c [ n ] , d [ n ] ;

/ / K e r n e l 1

f o r ( i n t i = 0 ; i < n ; i ++){
i f ( cond [ i ] ) {

a [ i ] += 1 ;

}
}

/ / K e r n e l 2

f o r ( i n t i = 0 ; i < n ; i ++){
i f ( cond [ i ] ) {

a [ i ] = b [ i ] + c [ i ] ∗ d [ i ] ;

}
}

�e results of this experiment are shown in the heatmaps of Figure

6. It can be seen that the pro�tability of vectorization is limited for

the larger data types, i.e. 64 bit integers and �oating point numbers.

For the �rst kernel with the lower arithmetic intensity only the

select store is pro�table, while the scalar predicated store is in the

range of scalar performance and the overhead of the atomic select
store causes slowdowns. Another observation is that all techniques

cause slowdowns if the vectorized code is never executed, i.e. the

ratio is 0%. Again, especially large data types are a�ected.

It can also be seen, however, that all three techniques show

signi�cant speedups for smaller data types, such as characters (8

bit) or shorts (16 bit). �e only exception is the scalar predicated store
for 16 bit integers, where the branch predictor causes signi�cant

performance impacts. When taking a closer look at the magnitude

of these speedups, both select store approaches outperform the

state of the art, the scalar predicated store. For the kernel with

the lower arithmetic intensity, the speedup over the state of the

art ranges between 1.9x and 9.3x, while for the second kernel the

speedup over state of the art ranges between 0.95X and 3.58x. In

this case, the slowdown results from an execution probability of

0% and the added overhead of the never-executed code.

In today’s auto-vectorizers, the branching probability is assumed

to be 50% when performing the pro�tability analysis. Based on

this assumption, our methods of select store and atomic select store
always outperform the state of the art for conditional store oper-

ations of small data types. It is thus safe to replace it with our

approach, yielding a signi�cantly higher speedup by a factor of up

to 7x.

6 Conclusions
Vectorization is an important opitmization technique in today’s

compilers. We analyzed the capabilities of the most popular C/C++

compilers’ auto-vectorizers. �e analysis was performed on hard-

ware platforms supporting AVX2 and NEON. On the AVX2 plat-

forms, GCC and ICC were able to increase their vectorization rates

compared to a similar analysis performed in 2011. However, we

show in our analysis that the vectorization rates are lower for NEON

platforms. We identi�ed the problem to be the missing masked

load/store operations needed to vectorize basic blocks that contain

control �ow, i.e. that are wrapped by an if(-else) statement.
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Scalar Predicated Store Atomic Select Store Select Store

Figure 6. Heatmaps of experiment to analyze vectorization pro�tability; shown are speedups when scaling data type sizes and branching

ratios for two kernels with di�erent arithmetic intensities

We therefore proposed two techniques: one to safely vectorize

conditional load, and one to vectorize conditional store. �ese ap-

proaches have been implemented in the LLVM compiler, as they are

independent of the code to be vectorized and can be applied auto-

matically during compilation. Furthermore, the overhead added for

the vectorized load is neglectible, while it enables loop vectorization

by the auto-vectorizers, i.e. without further code annotations. We

also showed signi�cant improvements by our technique of select
stores. Even when applying atomic select stores, we demonstrate

that there are use cases where a signi�cant speedup over the state-

of-the-art scalar predicated store can be achieved.
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