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Abstract. The SYCL standard promises to enable high productivity
in heterogeneous programming of a broad range of parallel devices, in-
cluding multicore CPUs, GPUs, and FPGAs. Its modern and expressive
C++ API design, as well as flexible task graph execution model give
rise to ample optimization opportunities at run-time, such as the over-
lapping of data transfers and kernel execution. However, it is not clear
which of the existing SYCL implementations perform such scheduling
optimizations, and to what extent. Furthermore, SYCL’s high level of
abstraction may raise concerns about sacrificing performance for ease
of use. Benchmarks are required to accurately assess the performance
behavior of high-level programming models such as SYCL. To this end,
we present SYCL-Bench, a versatile benchmark suite for device charac-
terization and runtime benchmarking, written in SYCL. We experimen-
tally demonstrate the effectiveness of SYCL-Bench by performing device
characterization of the NVIDIA TITAN X GPU, and by evaluating the
efficiency of the hipSYCL and ComputeCpp SYCL implementations.

Keywords: SYCL Benchmarks · Heterogeneous Computing · SYCL
Runtime · Cross Platform.

1 Introduction

The pursuit of high performance and energy efficiency led to the emergence of
heterogeneous computing, where different parts of an application benefit from
specialized hardware better suited for the problem. Hardware accelerators such
as GPUs, FPGAs, and many-core CPUs are used as co-processors resulting in
heterogeneous architectures. To achieve optimal performance, such hardware
typically also requires dedicated code paths. However, existing programming
models either lack industry support, are specific to certain vendors (such as
NVIDIA’s CUDA), or too low level and cumbersome to use (e.g. OpenCL) to
find universal adoption. SYCL[12] is a recent, royalty-free open standard pub-
lished by the Khronos Group intended for programming a wide range of hetero-
geneous architectures. Its high-level single-source programming model combines
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the portability of OpenCL with modern C++ constructs and idioms. Mundane
tasks such as scheduling, data management, and synchronization are handled
implicitly by the SYCL runtime, increasing programmer productivity. While the
SYCL runtime may automatically perform optimizations such as overlapping
data transfers and kernel executions, it is not apparent whether any particular
implementation actually employs such optimizations for a given code pattern. As
SYCL is a recent standard, to the best of our knowledge only individual bench-
marks exist to evaluate the different implementations, whereas a cross-platform
benchmark suite has not yet been proposed. We present SYCL-Bench5, a versa-
tile benchmark suite written in SYCL. The main goal of SYCL-Bench is to eval-
uate the performance of both devices and different SYCL implementations. To
this end, SYCL-Bench not only contains benchmarks to characterize hardware,
but also SYCL-specific benchmarks that present optimization opportunities to
the SYCL runtime and test how well a particular implementation capitalizes on
those opportunities. In summary, we make the following main contributions:

– We present the first benchmark suite designed specifically for SYCL: SYCL-
Bench includes 62 codes suited for hardware characterization and 9 codes to
evaluate SYCL-specific runtime features.

– The benchmark suite models various use cases and enables detailed evalu-
ation of different SYCL implementations and their optimization strategies,
thereby facilitating adoption and further development of SYCL.

– We experimentally demonstrate the effectiveness of SYCL-Bench by per-
forming device characterization on an NVIDIA GTX TITAN X and by eval-
uating two different implementations, hipSYCL and ComputeCpp.

2 The SYCL programming model

SYCL is a programming model for heterogeneous computing that builds on pure
C++. This means that SYCL does not extend the C++ language itself in any
way. As a SYCL program is always a valid C++ program, a SYCL implementa-
tion for CPUs can be implemented without requiring a dedicated compiler. This
property can, for example, be used to debug heterogeneous applications written
in SYCL with regular CPU debugging tools. When accelerators are targeted, a
SYCL implementation requires a dedicated SYCL compiler that identifies ker-
nels, extracts them, and compiles them either into an intermediate representation
(such as SPIR or PTX) or machine code for the accelerator. The resulting de-
vice binary is then typically embedded by the SYCL implementation within the
host binary for execution. Unlike OpenCL, where kernel code is usually either
loaded at runtime from a source file or stored in an application as a string, ker-
nel code and host code in SYCL are stored in the same source file, similarly to
e.g. CUDA. SYCL is, therefore, a single-source programming model, enabling
modern C++ design approaches such as templates to work seamlessly and in a
type-safe manner across boundaries of host and device code.

5 https://github.com/bcosenza/sycl-bench
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In SYCL, the execution of data parallel kernels is organized by a task graph.
This task graph is implicitly constructed by the SYCL runtime based on data
access specifications that a programmer associates with a kernel by constructing
accessor objects. If two kernels request conflicting accesses to the same data
(e.g. both require read-write access), the SYCL runtime introduces a dependency
between the two kernels based on the order in which they were submitted. Note
that this only guarantees correctness with respect to the execution order of
multiple kernels, race conditions within kernels (e.g., on the level of individual
instructions) are not covered.

SYCL follows the execution and memory model of OpenCL: work items con-
stitute a unit of work that is processed in parallel. They are grouped in work
groups. Within a work group, the execution of work items can be synchronized.
There is a host memory, a global memory on the accelerator, local memory that
is shared between the work items of a group and per-work-item private memory.

SYCL kernels can be submitted in four different ways:

– A single, non-parallel task is submitted using single task() functionality.

– A basic parallel for mechanism that, from the programmer’s point of view,
does not group parallel work items together in work groups.

– An hierarchical parallel for, where a first level of parallelism for the work
groups is initiated using parallel for work group(). Inside the invocation
parallel for work group(), another level of parallelism can be created us-
ing parallel for work item(). With hierarchical parallel for kernels, the
programmer can optionally control the work group size that will be used to
execute the kernel on the hardware. Additionally, local memory can be used
in these types of kernels.

– ndrange parallel for provides a method for invoking kernels that grants
explicit control over work group sizes, allowing the usage of local memory
and explicit barriers in SYCL code. In principle, it is not more powerful than
hierarchical parallel for, but rather provides a programming model that is
more familiar to programmers who have a background in OpenCL or CUDA.

While SYCL is still a relatively new programming model with the first imple-
mentation reaching official specification conformance in August 2018[13], there
is a growing SYCL ecosystem including projects such as the SYCL parallel STL,
a Tensorflow port to SYCL as well as four major SYCL implementations: Code-
play’s commercial ComputeCpp[5], the open-source LLVM-based SYCL[10] led
by Intel, hipSYCL[1], an open-source implementation led by Heidelberg Uni-
versity, as well as triSYCL[20], an open-source project mainly funded by Xil-
inx. Together, these four implementations allow a SYCL program to target any
CPU6, GPUs from at least four vendors, and FPGAs from two vendors. Table 1
summarizes different implementations and supported platforms.

6 Given that a suitable C++ compiler exists for the hardware.
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Table 1: A summary of different SYCL implementations, backends, supported
platforms, and specification conformance.

Implementation Backends Supported hardware Conformance

ComputeCpp
OpenCL SPIR/SPIR-V Intel CPUs, SYCL 1.2.1
OpenCL PTX Intel GPUs, ARM Mali
(Experimental) NVIDIA GPUs

hipSYCL
CPU (OpenMP) any CPU pre-conformance
CUDA NVIDIA GPUs
ROCm AMD GPUs

LLVM SYCL
OpenCL SPIR-V Intel CPUs pre-conformance
CUDA Intel GPUs, Intel FPGAs
(Experimental) NVIDIA GPUs

triSYCL
CPU (OpenMP, TBB) any CPU pre-conformance
OpenCL SPIR Xilinx FPGAs
(Experimental)

3 Benchmarks Design Methodology

SYCL-Bench has been designed to accomplish multiple goals. First, like tradi-
tional benchmark suites, it contains benchmarks designed to characterize the
performance of existing and future hardware that can be programmed using
SYCL. The range of potential target architectures is very broad: it includes
all OpenCL-conformant devices, addressed with the approach defined by SYCL
1.2.1 of interpreting SYCL as a higher-level model for OpenCL7; alternatively,
SYCL implementations may support additional ways to target specific hardware
without using OpenCL (e.g., hipSYCL targets NVIDIA and AMD devices by ex-
tending Clang’s CUDA frontend with support for SYCL constructs). For device
characterization, particular attention is given to GPU architectures, addressed
with a specific set of microbenchmarks. This set of architectural microbench-
marks is complemented by a set of applications and single kernels.

The SYCL programming model and its peculiar aspects are also central to
the design of the benchmarks. For example, the benchmark codes are written in
modern C++, using template types to broaden the evaluation set.

Additionally, SYCL-Bench includes a number of codes that explicitly create
complex inter-task dependencies, thus implicitly stressing the efficiency of the
SYCL runtime implementations. Since SYCL implementations may implement
the various mechanisms to submit SYCL kernels (see Section 2) differently and
with varying performance characteristics, many benchmarks include variants for
several of those mechanisms. Lastly, we also present a set of synthetic patterns

7 This approach assumes the existence of one or more OpenCL implementations avail-
able on the host machine. If no OpenCL implementation is available, then the SYCL
implementation provides only the SYCL host device to run kernels on [12].
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to benchmark the SYCL runtime overhead and task throughput. To summarize,
SYCL-Bench contains three categories of benchmarks:

Microbenchmarks A set of architectural microbenchmarks with different pat-
terns stressing different hardware subsystems, e.g. arithmetic or the memory
subsystem. They have been designed to emphasize performance characteri-
zation on GPU devices.

Applications/Kernels These are real-world applications and kernels from dif-
ferent domains such as linear algebra, image processing, molecular dynamics.
The main goal of this category is to test the performance of different devices
and SYCL implementations for real-world code patterns.

SYCL Runtime Benchmarks These benchmarks are designed to stress the
SYCL runtime. This category includes multiple-kernels that can generate
different task graphs and stress different aspects of the SYCL runtime. Ex-
amples include the benchmarks to measure the scheduling latency and the
capabilities of the SYCL implementation to automatically overlap compute
operations and data transfers.

3.1 Microbenchmarks

We present five distinct microbenchmarks designed to quantitatively evaluate
various device performance characteristics through the lens of SYCL. The first,
DRAM, measures the achievable device memory bandwidth by copying single and
double precision floating-point values between two buffers. As an added twist,
it can also measure the performance for two and three-dimensional buffers, thus
indirectly quantifying how efficient a given SYCL implementation’s mapping of
higher-dimensional indices to the underlying hardware is. The local mem bench-
mark is similar in spirit, measuring the attainable local memory bandwidth by
repeatedly swapping single and double precision floating-point values inside a
work group’s local memory allocation.

The arith and sf benchmarks exercise the device’s main arithmetic units
and special function units, respectively. Both execute a tight loop, the former
doing repeated multiply-add operations, and the latter applying three trigono-
metric functions (sin, cos, tan) in series. Finally, host device bandwidth mea-
sures the transfer bandwidth between the host and device memory, by copying
large, contiguous and strided chunks of one, two, and three-dimensional buffers.

3.2 Applications/Kernels

To ensure the diversity of the benchmark suite, it is essential to include applica-
tions/kernels from different domains. Even applications from the same domain
may exhibit different features. Therefore, we include applications/kernels from
a wide range of domains such as image processing, linear algebra, data mining,
data analytics. There are mainly two sources of applications and kernels. We
ported 15 CUDA applications/kernels from PolyBench suite [8] to SYCL and
developed 9 additional SYCL applications/kernels to cover image processing,
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data analytics, and physics simulation domains. In addition, applications and
kernels are also equipped with a functional validation framework that further
validates SYCL implementations on a wide range of benchmarks. Table 2 shows
the list of applications and kernels along with their domain.

3.3 SYCL Runtime Benchmarking

DAG Task Throughput for Sequential Tasks In this benchmark, for a
given problem size N , N kernels are launched that request read-write access
to the same buffer, and the time from submission to the completion of all N
kernels is measured. Because more than one kernel accesses the same memory
object, a read-write conflict arises that forces the SYCL runtime to process the
kernels sequentially. These memory accesses, therefore, represent an edge in the
resulting DAG (directed acyclic graph). In order to verify that each kernel has
completed successfully, the buffer holds a counter which is incremented by one by
each kernel. Since the kernel itself is trivial, this benchmark is dominated by the
scheduling latency of the SYCL implementation and the latency of the backend
used by the SYCL implementation (e.g. OpenCL for ComputeCpp or HIP for
hipSYCL). Because SYCL implementations may have different scheduling code
paths or different amounts of execution overhead for different types of kernel
invocations, this benchmark comes in variants that utilize the various mecha-
nisms in SYCL to submit kernels (single task, basic parallel for, ndrange
parallel for and hierarchical parallel for).

DAG Task Throughput for Independent Tasks The DAG task through-
put benchmark for independent tasks is very similar to the benchmark described
in Section 3.3. However, here given a problem size N , N independent tasks are
spawned. The independence is guaranteed by creating one buffer per kernel so
that each kernel only accesses its own buffer and no conflicts arise. To verify
that each kernel has been executed successfully, each kernel simply sets the
content of the buffer to a unique number that is different for each kernel sub-
mission. The runtime to submit and complete all kernels is measured. While
this benchmark is also sensitive to the scheduling latencies and overheads in
the SYCL implementation, it additionally allows the SYCL implementation to
exploit hardware concurrency, such as running multiple kernels concurrently on
a device to improve the overall throughput. Note that, while more complex de-
pendencies between tasks compared to our two throughput benchmarks may be
interesting to increase the load on the SYCL task synchronization mechanisms
and the task dependency analysis, the throughput benchmarks provide a way
of testing two easy-to-understand extreme cases: The case where no tasks can
be run concurrently (sequential throughput benchmark) and the case where ev-
erything can run concurrently (independent throughput benchmark). They can
therefore be used to estimate the overhead that can be expected from a SYCL
implementation in ideal, well-defined scenarios.
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Block Transform The blocked transform benchmark divides an input array
into chunks of configurable size, and submits a kernel for each chunk that re-
quests read/write access only to its chunk. Each kernel then performs a tunable
number of Mandelbrot iterations on the input data. This only serves as a dummy
workload to extend the kernel runtime. The actual focus of the benchmark is to
test whether the SYCL implementation is able to automatically overlap the data
transfers needed to copy the chunk data to the device and the kernels operating
on each chunk. Because the kernels are independent, a SYCL implementation
might even be able to execute multiple kernels concurrently, if this is supported
by the hardware. Additionally, the benchmark is also sensitive to whether the
SYCL implementation is capable of transferring data at sub-buffer granularity
at all (i.e., individual data transfers per chunk). When running on CPU, a SYCL
implementation might also be able to remove the data transfers entirely as the
kernel and host would be running in the same memory space. This can also be
investigated with this benchmark. The resulting DAG is illustrated in Figure 1.

Fig. 1: The DAG for blocked transform. The arrows represent dependencies.

Table 2 shows the full list of benchmarks in the SYCL-Bench suite. The three
categories Micro, Application/Kernel, and Runtime contain five, twenty
four, and three benchmarks, respectively. We also leverage SYCL’s support for
C++ templates to instantiate benchmarks with different data types. As a result,
the SYCL-Bench consists of 26 microbenchmarks codes, 36 applications/kernels
codes (total 62 codes for hardware characterization) and 9 codes to evaluate the
efficiency of the SYCL-runtime.

4 Experimental Evaluation

We present results obtained on a machine equipped with both a high-end NVIDIA
GPU and Intel CPU, representing two important target architectures for SYCL.
However, given the selective support of different hardware platforms in current
SYCL implementations as shown in Table 1, the set of implementations to com-
pare was limited. It was, therefore, necessary to restrict the evaluated SYCL
implementations to a common denominator that supports both our CPU and
GPU, namely hipSYCL and ComputeCpp. Table 3 shows details of our experi-
mental setup.

8 Ported from PolyBench suite [8].
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Table 2: The detailed list of benchmarks included in the SYCL-Bench suite.

Category Benchmark Name Short Domain

Micro
arith, DRAM, local mem, sf - Microbench
host device bandwidth - Microbench

App/Kernel

lin reg coeff LRC Data Analytics
lin reg error LRE Data Analytics
median MEDIAN Image Processing
mol dyn MD Physics Simulation
scalar prod SP Linear Algebra
sobel3/5/7 SOBEL3/5/7 Image Processing
vec add VA Linear Algebra
2DConvolution8 2DCON Image Processing
2mm8 2MM Linear Algebra
3DConvolution8 3DCON Image Processing
3mm8 3MM Linear Algebra
atax8 ATAX Linear Algebra
bicg8 BICG Linear Algebra
correlation8 CORR Data Mining
covariance 8 COV Data Mining
fdtd2d8 FTD2D Stencils
gemm8 GEMM Linear Algebra
gesummv8 GESUM Linear Algebra
gramschmidt8 GRAMS Linear Algebra
mvt8 MVT Linear Algebra
syr2k8 SYR2K Linear Algebra
syrk8 SYRK Linear Algebra

Runtime

blocked transform BT Microbench
dag task throughput independent DTI Microbench
dag task throughput sequential DTS Microbench

4.1 ComputeCpp PTX Performance

In order to target NVIDIA GPUs with ComputeCpp 1.3, it is necessary to use
the experimental9 ComputeCpp PTX backend. This is because the NVIDIA
OpenCL implementation does not support ingesting kernels in the SPIR format,
which is normally used by ComputeCpp. Because of the experimental quality of
this backend, we expect to see an overall lower performance in microbenchmarks
and applications/kernels when compared to hipSYCL.

However, we found that even very short running kernels (of the order of
microseconds, when executed using hipSYCL) could sometimes run for tens of
milliseconds. In fact, with very high probability (> 90%) the third consecutive
run of a very short running kernel would inexplicably require approximately

9 https://developer.codeplay.com/products/computecpp/ce/guides/

platform-support/targeting-nvidia-ptx?version=1.3.0

https://developer.codeplay.com/products/computecpp/ce/guides/platform-support/targeting-nvidia-ptx?version=1.3.0
https://developer.codeplay.com/products/computecpp/ce/guides/platform-support/targeting-nvidia-ptx?version=1.3.0
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Table 3: Hardware and software used for our experiments.

Hardware
Intel Xeon CPU E5-2699 v3 2.30 GHz 32 GiB DDR4
NVIDIA GTX TITAN X (Maxwell) 1.0 GHz / 1.215 GHz (boost)

Software
Ubuntu 16.04 Linux 4.15 Clang 9.0.1
NVIDIA OpenCL 1.2 Intel OpenCL 2.0 CUDA 10.1
hipSYCL 0.8.1-master(12406c8c) ComputeCpp 1.3

100 milliseconds to complete. As a workaround for this performance anomaly,
we determined that by using SYCL’s built-in event profiling capabilities, we
were able to obtain timings that were in line with our expectations. As these
timings reflect the actual kernel execution time in hardware, relying solely on
them would give ComputeCpp an unfair advantage over hipSYCL’s host-side
timings. We, therefore, decided to proceed as follows: For all measurements taken
on NVIDIA hardware using ComputeCpp, we will provide two values. Results
marked as ComputeCpp PTX include the full execution time as observed by
the user, including the inexplicable overhead. A second value, Kernel only,
shows the execution time that is close to what could ideally be expected without
the overhead. Crucially however, unlike for hipSYCL, these results include no
runtime, driver, and kernel launch overhead. Note that we cannot rely on event
profiling in general, as this functionality is currently not available in some SYCL
implementations, including hipSYCL.

4.2 Microbenchmarking

This section describes the results we obtained by running the benchmarks de-
scribed in Section 3.1 on an NVIDIA GTX TITAN X. Figure 2 shows the mi-
crobenchmarking results. All microbenchmarks were executed 20 times, and we
present the best result obtained out of these runs. Missing bars indicate failed
verification of benchmark results. For the DRAM benchmark 3.375 GiB of memory
were copied between two buffers. As can be seen in Figure 2a, ComputeCpp’s
real-world performance is limited considerably by the aforementioned perfor-
mance bug. Considering ComputeCpp’s kernel time only, both implementations
achieve about 78% of the Titan X’s 336.6 GiB/s theoretical maximum for one
and two-dimensional single and double-precision floating-point copies. For three-
dimensional copies, hipSYCL exhibits a significant drop in throughput. On first
sight, this might indicate a choice of work group size that does not allow for
full memory coalescing. However, closer investigation reveals that the compu-
tation of linear buffer offsets becomes too expensive in three dimensions to be
completely hidden by DRAM access latencies. More specifically, the device code
generated by hipSYCL performs the same linear offset computation twice, once
for the reading buffer access, and another time for the write access. Explicitly
computing the linear offset once within the kernel, and using raw pointer ac-
cesses for reading and writing, alleviates this inefficiency and allows hipSYCL
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Fig. 2: Microbenchmarking results on NVIDIA GTX TITAN X.

to achieve full throughput again. Figure 2b indicates that host ↔ device copy
bandwidth is relatively unaffected by the type of transfer performed, with only
three-dimensional contiguous and strided device-to-host copies dipping slightly
for hipSYCL. ComputeCpp’s performance is somewhat worse for host-to-device
copies and considerably worse for device-to-host copies. Furthermore, many of
the variants could not correctly be verified for ComputeCpp, which we again at-
tribute to the experimental nature of the PTX backend. Figure 2c shows similar
local memory performance for both implementations, achieving approximately
3300 GiB/s for single and double precision copies. This is in line with results for
the GTX TITAN X published by Lopes et al.[16], when adjusting for the higher
boost clock used in our testing setup.

Moving on to arithmetic throughput in Figure 2d, we see that integer perfor-
mance is considerably lower than single-precision performance for both imple-
mentations. This is to be expected, as the IMAD instructions used in arith are
emulated on Maxwell[11]. Curiously, with 3134 single-precision GFLOP/s, even
for the idealized kernel-only measurement, ComputeCpp achieves little more
than half of hipSYCL’s 6016 GFLOP/s. This indicates that the device compiler
might not map the benchmark kernel’s multiply-add operations to correspond-
ing FMA instructions. Examination of the PTX device code generated by Com-
puteCpp confirms that this is indeed the case. Both implementations approxi-
mately achieve the expected 1⁄32-th in double-precision performance compared to
single precision. Finally, for the sf benchmark’s result, shown in Figure 2e, we
again see ComputeCpp achieving only about half of hipSYCL’s single-precision
performance, and a third in double precision. However, even hipSYCL’s perfor-
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Fig. 3: hipSYCL and ComputeCpp runtime on NVIDIA TITAN X.

mance is much lower than the theoretical maximum (which, with Maxwell’s 32
SFUs per SM should be approximately 1000 GOP/s, depending on clock speed).
Examination of the PTX device code reveals that both implementations emulate
the trigonometric functions rather than mapping to the corresponding SFU in-
trinstics (e.g. CUDA’s cosf). At the time of writing, it is therefore not possible
to benchmark SFU throughput on NVIDIA using either SYCL implementation.

4.3 Applications / Kernels

Figure 3 and Figure 4 show the execution time of benchmarks using hipSYCL
and ComputeCpp implementations running on NVIDIA GTX TITAN X and
Intel Xeon CPU, respectively. For measuring the execution time, we run each
benchmark 10 times and pick the median of the samples. In this work, we focus
on 32-bit data types.

Figure 3 shows that hipSYCL outperforms the ComputeCpp implementa-
tion across most of the benchmarks. On average, hipSYCL is 2.7× faster than
ComputeCpp on NVIDIA TITAN X. As mentioned earlier, this is primarily due
to the experimental PTX backend support for NVIDIA GPUs which has limita-
tions such as no support for OpenCL builtins. The suffixes ND and H are used to
differentiate between ndrange parallel for and hierarchical parallel for

implementations. The scalar prod (SP) benchmark provides both variants.
Figure 4 shows the execution time of benchmarks using hipSYCL and Com-

puteCpp implementations running on Intel Xeon CPU. Figure 4 shows that
the setup consisting of ComputeCpp with Intel’s OpenCL implementation out-
performs hipSYCL with the LLVM OpenMP implementation across most of
the benchmarks except SOBEL3, SOBEL5, SOBEL7, and 2DCON benchmarks.
On average, ComputeCpp is 25.2× faster than hipSYCL on CPU. The main
reason for the higher execution time for hipSYCL is that some benchmarks
use ndrange parallel for. ndrange parallel for cannot be implemented ef-
ficiently by library-based SYCL implementations without dedicated compiler
support (such as the CPU backends in hipSYCL and triSYCL) because it allows
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Fig. 4: Comparison of hipSYCL and ComputeCpp runtime on Intel Xeon CPU.

for explicit barriers. To implement correct barrier semantics, a SYCL imple-
mentation is forced to launch one thread per SYCL work item. For the usual
fine-grained parallelism exposed in typical SYCL applications at the work item
level, this forces the SYCL implementation to spawn a very large number of
threads (often much more than numbers of cores available in typical CPUs),
each of which is only assigned a small amount of work. This parallelization
scheme is not a good fit for CPU architectures. If we take out benchmarks which
implement ndrange parallel for (LRC, SPND), ComputeCpp is 4.5× faster
than hipSYCL.

Of the evaluated benchmarks in this category, for instance, SPND and LRC
use ndrange parallel for. The execution time of LRC and SPND are 94.07 (s)
and 51.33 (s) using hipSYCL compared to 0.008 (s) and 0.005 (s) using Com-
puteCpp, respectively. Therefore, for applications that are expected to show
performance portability, it is highly recommended to prefer hierarchical paral-
lel for over ndrange parallel for. The figure shows that the hierarchical

parallel for implementation (SPH) is significantly faster for scalar prod. It
will be interesting for future work to test other C++ compilers and OpenMP
implementations with hipSYCL (e.g., Intel C++ Compiler with Intel OpenMP
implementation).

4.4 SYCL Runtime

We measured the runtime of hipSYCL and ComputeCpp implementations using
dag task throughput sequential and dag task throughput independent bench-
marks on NVIDIA TITAN X. We varied the problem size that corresponds to
the number of submitted kernels. For the dag task throughput sequential,
we observed that not only is the SYCL runtime overhead almost the same for
hipSYCL and ComputeCpp, but also for the four different kernel invocations.
This is likely because for sequential GPU tasks, runtimes are dominated by la-
tencies below the level of the SYCL implementation (driver, PCIe, GPU).

Figure 5 shows the SYCL runtime overhead of hipSYCL and ComputeCpp
implementations when executing dag task throughput independent on NVIDIA
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Fig. 5: SYCL runtime overhead of hipSYCL and ComputeCpp implementations
on NVIDIA GTX TITAN X. The DAG consists of independent tasks.

29 210 211 212 213 214 215 216

Problem Size

0

10

20

30

40

50

E
xe

cu
tio

n
Ti

m
e

[s
]

BasParFor-hipSYCL
BasParFor-ComputeCpp

HierParFor-hipSYCL
HierParFor-ComputeCpp

SinTask-hipSYCL
SinTask-ComputeCPP

Fig. 6: SYCL runtime overhead of hipSYCL and ComputeCpp implementations
on Intel Xeon CPU. The DAG consists of independent tasks.

TITAN X. In contrast to the sequential tasks, we see that the ComputeCpp stack
exhibits a higher runtime overhead compared to the hipSYCL implementation.
Moreover, the gap is proportional to the number of submitted tasks, which means
that ComputeCpp has a higher average latency per submitted kernel. There are
two possible explanations for this behavior. An implementation could be faster
for this test because it executes the kernels concurrently on the hardware, or
because it has a lower scheduling overhead. Since hipSYCL does not launch ker-
nels concurrently for this benchmark, the performance performance gap can be
explained by a lower scheduling overhead in hipSYCL.

Figure 6 shows the execution time of the dag task throughput independent

benchmark on Intel Xeon CPU. As shown in the figure, submitting independent
kernels is significantly slower for hipSYCL basic parallel for and hierarchical
parallel for kernels compared to hipSYCL single task kernels and ComputeCpp.
Since basic and hierarchical parallel for kernel invocations in hipSYCL require
spawning OpenMP threads, OpenMP overheads are likely an explanation for
this behavior.
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5 Related Work

Benchmarking has been used to characterize heterogeneous architectures and
different programming models [3,4,2,9,7,6,14]. Che et al. [3] proposed Rodinia
benchmark suite to study emerging platforms such as GPUs. Che et al. [4] later
extended their work and characterized Rodinia benchmark suite and also com-
pared to contemporary CMP workloads. Burtscher et al. [2] did a quantitative
study of irregular programs on GPUs and presented two metrics called control-
flow irregularity and memory-access irregularity and investigated how irregular
GPU kernels differ from regular kernels with respect to these metrics. Kulkarni et
al. [14] presented a benchmark suite called Lonestar that is targeted for graph-
based irregular programs and characterized the first five programs from this
suite. The results show that even irregular applications can be accelerated using
modern multi-core machines. Fang et al. [7] designed and implemented Mars,
a runtime system for distributed data processing. They also ported six repre-
sentative applications on Mars. Danalis et al. [6] designed a benchmark suite
called Scalable HeterOgeneous Computing benchmark suite (SHOC) and used
it to compare OpenCL and CUDA programming models. Grauer-Gray et al. [8]
implemented PolyBench codes for processing on GPU using CUDA, OpenCL,
and HMPP, a pragma-based compiler.

Some researchers have used microbenchmarks as well as benchmarks to un-
derstand the performance as well as power characteristics of GPUs [23,17,21,15].
Thoman et al. [21] proposed microbenchmarks suite called uCLbench to charac-
terize and compare OpenCL performance of existing and future devices. Zhang
et al. [23] designed a set of microbenchmarks to study the power consumption of
different functional units of a GPU. Mei and Chu [17] studied the characteristics
of the memory hierarchy using microbenchmarks. Specifically, they investigated
GPU cache systems and investigated the throughput/latency of GPU global and
shared memory. Lal et al. [15] studied bottlenecks that cause low performance
and low energy efficiency in GPU workloads.

There are a few works on SYCL benchmarking as it a relatively new program-
ming model [18,19]. Potter and Keir [18] described a methodology for creating
efficient domain specific embedded languages on top of the SYCL for the OpenCL
standard. There are also some works which compare different programming mod-
els. For example, Silva et al. [19] analyzed the performance and characteristics
of SYCL, OpenMP, and OpenCL using two benchmarks. The results indicated
that benchmarks that rely on SYCL runtimes are not on par with OpenMP and
OpenCL. However, the gap is shrinking compared to previous studies. Thoman
et al. [22] developed the Celerity programming environment based on SYCL,
enabling developers to scale C++ applications to distributed memory clusters
with relative ease, and included some benchmark results comparing against an
MPI+OpenCL software stack. While these works provide some limited insight
into SYCL performance compared to other programming models, we present the
first SYCL benchmark suite that contains a complete and diverse set of bench-
marks to characterize both hardware devices and runtime performance aspects
of different SYCL implementations.
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6 Conclusions

We presented SYCL-Bench, the first benchmark suite specifically written in and
for SYCL, featuring three categories of benchmarks and a total of 71 code pat-
terns. We experimentally demonstrated the effectiveness of SYCL-Bench by per-
forming device characterization of the NVIDIA TITAN X GPU, showing that
near-peak performance can be achieved for metrics such as arithmetic through-
put and DRAM bandwidth. We also evaluated the efficiency of two SYCL
implementations: hipSYCL outperformed ComputeCpp on average by 2.7× in
real-world performance on TITAN X, and ComputeCpp was 4.5× faster than
hipSYCL on Intel Xeon without ndrange benchmarks. While ComputeCpp’s per-
formance on TITAN X is primarily hampered by the experimental PTX backend,
hipSYCL’s CPU performance is much lower because of API constructs that can-
not be implemented efficiently without a dedicated compiler. In the future work,
we plan to evaluate other SYCL implementations such as triSYCL and Intel
SYCL. SYCL-Bench is publicly available along with the testing framework.
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