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ABSTRACT
Unleashing the full potential of heterogeneous systems, con-
sisting of multi-core CPUs and GPUs, is a challenging task
due to the difference in processing capabilities, memory avail-
ability, and communication latencies of different computa-
tional resources.

In this paper we propose a novel approach that automat-
ically optimizes task partitioning for different (input) prob-
lem sizes and different heterogeneous architectures. We use
the Insieme source-to-source compiler to translate a single-
device OpenCL program into a multi-device OpenCL pro-
gram. The Insieme Runtime System then performs dynamic
task partitioning based on an offline-generated prediction
model. In order to derive the prediction model, we use a
machine learning approach based on Artificial Neural Net-
works (ANN) that incorporates static program features as
well as dynamic, input sensitive features. Principal compo-
nent analysis have been used to further improve the task
partitioning. Our approach has been evaluated over a suite
of 23 programs and respectively achieves a performance im-
provement of 22% and 25% compared to an execution of the
benchmarks on a single CPU and a single GPU which is
equal to 87.5% of the optimal performance.

Categories and Subject Descriptors
D.3.2 [Language Classifications]: Concurrent, distributed,
and parallel languages; D.3.4 [Processors]: Code genera-
tion/Compilers; C.1.3 [Other Architecture Styles]: Het-
erogeneous (hybrid) systems

General Terms
Languages, Algorithms, Performance

Keywords
heterogeneous computing, compilers, GPU, task partition-
ing, code analysis, machine learning, runtime system
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1. INTRODUCTION
In the past few years, heterogeneous computing systems

have emerged as mainstream and cost-effective means for
scaling. Compared to traditional homogeneous systems, they
offer high peak performance and energy efficiency. Not sur-
prisingly, three of the ten fastest supercomputers in the
world are heterogeneous systems [5], consisting of nodes with
multi-core CPUs and GPUs. The transition from homo-
geneous to heterogeneous architectures is challenging with
respect to the efficient utilization of the hardware resources
and the reuse of the software stack. This problem has drawn
great interest from researchers and industry, leading to the
proposal of several programming models including HMPP
[2], OpenACC [3], CUDA [27] and OpenCL [22]. OpenCL
(Open Computing Language) is the first open standard for
cross-platform parallel computing, supported by many hard-
ware vendors such as AMD, ARM, IBM, Intel, and NVIDIA.
OpenCL supports a wide range of hardware through a low-
level high performance abstraction layer, supporting the de-
velopment of programs without knowledge of the underlying
architecture. Nevertheless, writing programs for heteroge-
neous systems remains a challenging task due to the dif-
ference in processing capabilities, memory availability, and
communication latencies of different computational resources
(called devices in OpenCL).

1.1 Motivation
As heterogeneous computing opens many new opportu-

nities for developing parallel algorithms, our work is moti-
vated by the additional challenges and complexity that it
also introduces. One of the challenges is the distribution of
tasks (i.e. task partitioning) among the available OpenCL
devices in order to maximize the system performance. Task
partitioning defines how the total workload (all threads of
a program) is distributed among several computational re-
sources.

It is important to understand that the best performing
task partitioning is likely to change with different applica-
tions, different (input) problem sizes, and different hardware
configurations. We justify our statement presenting a case
study with two programs which are part of our test cases:
linear regression and reduction. The programs have been
executed with different problem sizes and varying task pari-
tionings. We measured the execution times on two hetero-
geneous target architectures, consisting of one CPU and two
GPUs (the target architecture configurations are detailed in
Table 3). The results of these experiments are shown in
Figure 1.
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(a) Linear regression on mc1
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(b) Linear regression on mc2
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(c) Reduction on mc1
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(d) Reduction on mc2

Figure 1: Performance behavior of two programs on different target architectures with varying problem size
(i.e. the number of threads). Each chart shows execution times (in seconds) in logarithmic scale (y-axis) with
different number of threads (work items in OpenCL) (x-axis). Detailed hardware descriptions of the target
architectures mc1 and mc2 are shown in Table 3.

On the first target architecture (mc1, see Table 3) for
small problem sizes, the GPU is less effective and the one
CPU task partitioning delivers the best performance for
both applications. However, for specific problem sizes, a
hybrid task partitioning (using the CPU as well as one or
two GPUs) or a GPU only task partitioning is preferable.
On the second target architecture (mc2, see Table 3), linear
regression performs best on one GPU for smaller problem
sizes while reduction reaches the best performance with one
CPU. For increasing problem sizes the GPUs become more
effective and linear regression should be distributed over two
GPUs for both mc1 and mc2. The reduction program ex-
hibits a different behavior for larger problem sizes, favoring
hybrid solutions which outperform any homogeneous config-
uration by up to 44% and 19% on mc1 and mc2, respectively.

These experiments demonstrate that even for a single ap-
plication, the optimal partitioning considerably depends on
the problem size and the capabilities of the hardware.

Another important aspect of heterogeneous computing is
the difficulty of writing multi-device programs (i.e. a single
program which can be executed on multiple devices con-
currently). Since current state-of-the-art compilers are not
capable of automatizing this complex task, new tools are
needed in order to facilitate the conversion of existing pro-
grams to heterogeneous systems.

In this paper we present an automatic, problem size sensi-
tive compiler-runtime method for task partitioning of Open-
CL programs on heterogeneous systems. Our work is based
on machine learning which effectively combines compile time
analysis with runtime feature evaluation to predict the op-
timal task partitioning for every combination of program,
problem size and hardware configuration.

The contributions of this paper are as follows:

• We propose and implement a novel compiler-runtime
framework for auto-generation of multi-device OpenCL
code and optimized task partitioning on heterogeneous
systems. Our framework is portable to any OpenCL
environment with an arbitrary number of devices. Our
task partitioning approach is based on an offline gen-
erated problem size sensitive model, which is capa-
ble of outperforming the CPU/GPU only strategy by
22% and 25%, respectively. Our experimental results
demonstrate the capabilities of our approach using 23
different applications on two different heterogeneous
multi-device systems.

• We show that Principal Component Analysis (PCA)
does improve the performance of dynamic task parti-
tioning system by 2% to 7%, depending on the used
machine learning technique and target architecture.
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Figure 2: Framework Overview

• We present an analysis of different machine learning
techniques suitable to solve the automatic task parti-
tioning problem and show that Artificial Neural Net-
works (ANN) outperform Support Vector Machines
(SVM) for the presented use case.

• We empirically demonstrate the benefits of our ma-
chine learning based approaches compared to tradi-
tional static task partitioning techniques.

The remainder of this paper is organized as follows. The
next section gives an architectural overview of the Insieme
Compiler and Runtime framework. Section 3 describes the
partitioning problem and the generation of the machine learn-
ing models. Section 4 presents the experimental methodol-
ogy. Section 5 discusses the experimental results. Section 6
presents related works and Section 7 concludes the paper.

2. FRAMEWORK OVERVIEW
Heterogeneous systems are difficult to program, and more-

over the performance capability of individual devices can
vary significantly across different applications and problem
sizes which often makes static, problem size insensitive dis-
tribution techniques unsuitable. The Insieme Compiler and
Runtime framework [1] relieves the developer from this dif-
ficult task. It consists of a source-to-source compiler and
a runtime system. The Insieme Compiler translates single-
device OpenCL programs (i.e. OpenCL programs which use
only one computational resource) into multi-device OpenCL
programs. The Insieme Runtime System distributes the
computation among the available devices to effectively ex-
ploit the performance capabilities of a heterogeneous system.

2.1 Architecture
Figure 2 illustrates the architecture of the proposed frame-

work, highlighting two main phases: training and deploy-
ment. The labels (1-7) in Figure 2(a) and Figure 2(b) ex-
plain the processing of a program within the Insieme frame-
work.

The goal of the training phase is to build a task parti-
tioning prediction model. Any previously unseen target ar-
chitecture can be supported by generating a new model for
it. Since the model generation is done automatically, our
approach can be ported to any heterogeneous system with-
out user intervention. To build a model, a set of OpenCL
programs are provided to the system and translated into the
Insieme parallel intermediate representation (INSPIRE, see

Section 2.2) by the code analyzer (1). From this represen-
tation, the features of the program (static program features)
are extracted and stored in a database (2). The intermediate
representation of the program is then passed to the backend
which generates multi-device OpenCL code (3). Once gener-
ated, the new program will be executed with various problem
sizes and the available task partitionings. The obtained per-
formance measurements (4), together with the problem size
dependent features of the program (i.e. runtime features),
are collected and added to the database (5). After these
steps have been accomplished for all programs, the trainer
uses the features and the performance measurements stored
in the database (6) to generate a task partitioning prediction
model (7).

In the deployment phase a new OpenCL program is pro-
vided to the analyzer (1) for optimizations, the static fea-
tures are extracted (2) and the intermediate representation
is passed to the backend (3) which generates a multi-device
OpenCL program (4). When the program is executed, the
runtime features are provided to the previously trained model
(5), which combines them with the static program features
to predict the best task partitioning for the current program
with the selected problem size (6). Finally, the runtime sys-
tem executes the program on the given hardware using the
predicted task partitioning (7).

2.2 Implementation
We have implemented a powerful framework for code trans-

formations and program analysis for heterogeneous parallel
systems as part of Insieme [1]. It consists primarily of two
components: a source-to-source compiler and a runtime sys-
tem. The compiler translates OpenCL input code to an In-
termediate Representation (IR) and back to OpenCL. This
IR offers a formal and compact representation of programs
that facilitates code analysis and transformation. The In-
sieme Runtime System is responsible for the execution and
scheduling of the generated programs. It is capable of parti-
tioning and distributing tasks over heterogeneous computing
devices using interchangeable scheduling policies.

The input for the Insieme Compiler abc is a single-device
OpenCL program. An OpenCL program consists of a host
and a device part. The host part runs on the CPU and is
responsible for setting up the OpenCL devices (e.g. a GPU
or the CPU itself). The device part (called kernel) is a
data-parallel task and describes the computations performed
by a single thread (called work item in OpenCL). During
the program execution, a certain number of work items is



generated and executed in parallel. The number of work
items generated increases with the input problem size. The
exchange of data between the host and the compute devices
is implemented through memory buffers, that are passed as
separate arguments to the kernel.

The translation of the OpenCL input code into IR code
occurs in two distinct steps. In the first step, the Insieme
Compiler uses the open source Clang C frontend [7] to gen-
erate an Abstract Syntax Tree (AST) from the input code.
In a second step, the AST is transformed to the Insieme
parallel intermediate representation (INSPIRE [1]) on which
analyses and transformations are performed.

In order to distribute a task, the Insieme Compiler an-
alyzes the generated IR of the input program. It collects
the subscripts of all buffer accesses in order to derive the
buffer’s access pattern. This analysis identifies whether a
buffer should be replicated or distributed evenly among sev-
eral devices. After collecting all the access patterns, the
analysis checks if the access expression is (a) a constant, (b)
the result of a convex function depending on the thread id,
or (c) something else. If only accesses of type (b) occur, the
buffer is split among all devices (i.e. buffer is splittable).
If accesses of type (a) or (c) happen, part of it (a) or the
entire buffer (c) has to be copied to every device (i.e. the
buffer is non-splittable). In case of (a) and (c), the amount
of data to be transferred increases linearly with the number
of devices used. Obviously, copying the same data to each
device is only feasible if there are only read accesses to these
buffers. When write accesses of type (a) or (c) occur, our
framework is not capable of distributing the kernel. A kernel
can be distributed over several devices if and only if all its
buffers with write accesses are splittable. However, due to
the limited synchronization capabilities of OpenCL, in most
kernels use access pattern (b) for their write accesses, which
means they are splittable.

The access pattern analysis is based entirely on the de-
vice code. However, also the host code has to be adapted
according to the results of the access pattern analysis in or-
der to guarantee the correct distribution of data. For this
reason, the Insieme Compiler connects host and device code
during the translation of the Clang AST into IR, enabling
the analysis of the entire program.

After the analysis, the IR is translated by the backend
to a multi-device OpenCL program. The generated code is
semantically equivalent to the input code, but its kernels can
be distributed among a generic number of devices by the
Insieme Runtime System. This implies that some buffers
are replicated while others are distributed over the selected
devices, depending on their access pattern inside the kernel.
To select the task partitioning a priori, the runtime system
employs a model generated by machine learning. This model
is based on static program features extracted at compile time
and problem size sensitive features collected at runtime. A
detailed description of how we extract features and build
this model can be found in Section 3.

2.3 Limitations
While the Insieme framework can be used to optimize the

performance of many programs on heterogeneous systems, it
also has limitations that leave room for future improvement.
At the current stage, the buffer analysis and task partition-
ing are executed individually on each kernel. In programs
with multiple kernels, this can cause unnecessary data trans-

fers since the output of each of them must be copied back
to the host in order to be redistributed with a new task
partitioning.

Device-specific optimizations are not in the scope of this
publication, although our machine learning guided task par-
titioning could potentially support it. We are aware of the
opportunities that this approach can offer and we will inves-
tigate it in future work.

Other restrictions are related to scattered data accesses
and atomic operations, both performed on buffers in global
memory. For scattered accesses on buffers, the analysis dis-
tinguishes two cases: read-only and read-write buffers. In
the first case, the entire buffer will be copied to each de-
vice including data that is not needed. In the second case
the kernel will be not distributed, since the gathering and
merging of writes from different devices is not yet supported.
Regarding the use of atomic operations on buffers, OpenCL
does not provide any means to implement such operations
over multiple devices, therefore Insieme currently does not
support kernels with atomic operations.

Our approach cannot deal with irregular workloads due
to the difficulty to statically predict an optimized task par-
titioning for such cases.

3. PARTITIONING PARALLEL TASKS
Data-parallel tasks can often be split into smaller sub-

tasks and distributed across multiple devices. However, find-
ing an efficient partitioning is not trivial. As will be ex-
plained in Section 5 and also pointed out by other stud-
ies [18], a dynamic scheduling approach may not lead to an
optimal solution, mostly due to the large difference in per-
formance and transfer bandwidth of the individual devices.
Therefore our approach, based on analysis of the program
structure and input data, tries to predict the optimal par-
titioning for an OpenCL program a priori. This section
describes the extraction of features and the construction of
the machine learning model, used to predict a partitioning.

3.1 Predicting the Optimal Partitioning
Our overall approach requires to build a model using ma-

chine learning in order to predict a task partitioning p from
a vector of features that describes the essential characteris-
tics of a program as well as the current problem size. Each
task partitioning is characterized by a tuple of n integer
values for a target architecture with n devices. Each value
represents the percentage of work that is executed on a par-
ticular device. The set P contains all possible partitionings
over the available devices with a granularity of 10% and the
predicted task partitioning p should be as near as possible
to the best task partitioning in terms of performance. As
done in [18] we choose a granularity of 10% since this is a
good compromise between granularity and number of task
partitionings.

3.2 Extracting Features
The feature extraction consists of two phases. In the first

phase, all the features that can be statically inferred from
the intermediate representation are extracted. This is done
during the source-to-source compilation step of the Insieme
Compiler. In the second phase, the Insieme Runtime System
determines the values of all problem size dependent runtime
features. This phase takes place when a program is executed,
since the problem size is unknown at compile time.



(a) Features selected by Greedy Feature Selection for mc1

Rk. static program features MSE
2 OpenCL built-in functions 76.3
3 Number of branches / number of statements 64.4
4 Scalar float operations /number of statements 61.1

Rk. Runtime features MSE
1 Data transfer size for splittable buffer (device to host) 99.7
5 Number of global work items 60.0
6 Data transfer size for splittable buffer (host to device) 47.6
7 Runtime feature Nr. 3 / total number of arith. operations 47.5

(b) Features selected for mc2

Rk. static program features MSE
1 Number of branches / number of statements 91.6
2 Scalar float operations / number of statements 75.8
4 OpenCL built-in functions / number of statements 66.9
6 Scalar int operations / number of statements 56.5
7 Vector float operations / number of statements 52.2
8 Number of loops / number of statements 48.6
9 Scalar int operations 47.5

10 Vector float operations 46.9

Rk. Runtime features MSE
3 Data transfer size for splittable buffer (host to device) 69.6
5 Data transfer size for splittable buffer (device to host) 64.0

Table 1: Static program and runtime features used by our approach determined using the Greedy Feature
Selection [30] ranked with their selection order along with the mean squared error (MSE) on the training
dataset using an SVM.

The feature extractor needs to know the execution count
of each feature relevant statement. If it is not possible to
derive the execution count at compile time (for instance, if
loop bounds depend on input data), the feature extractor
assumes a loop iteration count of 100. This means that ev-
ery static feature that appears in a loop is multiplied by 100.
If loops are nested, this rule is applied recursively. The re-
sulting value may not be realistic in many cases. However,
our goal is not to estimate the absolute execution times but
instead compare relative execution times for different de-
vices. Therefore, it is sufficient to consider whether feature
relevant statements occur outside, inside or within nested
loops. The compiler is also responsible for the generation of
one univariant linear polynomial for each runtime feature,
which takes the problem size as input. The generated poly-
noms are evaluated during the second phase of the feature
extraction to calculate the actual values of the runtime fea-
tures.

The features we used to train our framework are sub-
divided in static program features (extracted from the inter-
mediate representation during the source-to-source transla-
tion process) and runtime features (calculated by the run-
time system when the program is executed). Most static pro-
gram features count the occurrence of certain activities, like
arithmetic operations, memory accesses, or OpenCL built-in
functions (e.g. log or cos). Others describe the ratio between
two characteristics (e.g. the ratio between computation and
memory accesses or the ratio between number of branches
and all instructions).

All runtime features depend on the problem size. Apart
from the problem size itself, they describe how much data
has to be transferred between the host and the devices. We
differ between device-to-host and host-to-device transfers
and between transfer size for splittable and non splittable
buffers. Since splittable buffers are distributed over all de-
vices, the total amount of data to be copied is independent
from the number of devices used. In contrast, the transfer
size of non splittable buffers scales with the number of de-
vices, since each device must hold a copy of the entire buffer
in its memory.

We used the Greedy Feature Selection described in [30]
and illustrated by Algorithm 1 to select the most important
features out of a set of 24 static code features and 9 dynamic
runtime features. To select the most important features, a
separate model is trained for each single feature s ∈ S. The
one of the model which yields the lowest error mse is added

Algorithm 1 Greedy Feature Selection. The features to be
used are collected in the set F .
1: S ← non empty set of all features
2: F ← ∅; mse←∞; improved← true
3: while improved do
4: improved← false
5: for all s ∈ S do
6: model← trainModel({s} ∪ F )
7: msetmp ← evaluate(model)
8: if msetmp < mse then
9: mse← msetmp

10: f ← s . feature selected to be used
11: improved← true
12: end if
13: end for
14: if improved then
15: S ← S \ {f}
16: F ← F ∪ {f}
17: end if
18: end while

to the set of selected features F . In the next step, a separate
model for each remaining feature s and the already selected
ones in set F is trained. Again, the feature which gives the
lowest error is added to the set of selected features F . We
repeat this step until adding another feature will not further
improve the error.

We performed this greedy algorithm on both target archi-
tectures using an SVM. For the feature selection, static code
features and dynamic runtime features were treated equally.
Table 1 lists the features that we used to train models for
our two target architectures. The column Rk. indicates the
order in which the features where added. The column MSE
shows the means squared error of the model using the cur-
rent feature and the ones with a lower Rk. The selected
features clearly show that on mc1 the dynamic runtime fea-
tures have a bigger influence on the result, while on mc2 the
static features are more important. This underlines the ne-
cessity to select the features individually for different target
architectures. As shown in Section 5, the combination of the
selected static program features and runtime features appar-
ently carry enough information to characterize the behavior
of our tested programs.

3.3 Generating Training Data



Training codes description Performance1 on mc1 Performance1 on mc2
Application CPU GPU SVM ANN CPU GPU SVM ANN

Data Transfer to/from Device 90 37 92 98 84 72 88 94
Vector Addition 77 40 93 94 71 69 87 85

Matrix Multiplication 64 49 78 87 45 79 98 90
Black-Scholes Option Pricing 82 41 91 93 65 76 93 95

Vertex positions in Sine Wave Pattern 15 70 34 47 7 70 83 95
2D 3x3 Convolution 70 50 94 98 38 82 95 96

Molecular Dynamics Simulation 81 57 94 99 68 87 83 94
Sparse Matrix Vector Multiplication 96 59 97 100 82 93 98 96

Linear Regression 51 59 51 60 22 74 70 83
K-Means clustering 86 48 97 98 76 80 85 88

K-Nearest-Neighbor Classification 22 68 45 48 5 68 69 87
Symmetric Rank-2k Operations 95 24 87 78 94 49 51 54

Sobel Filter 75 58 91 97 51 90 85 85
Median Filter 82 54 96 98 56 93 90 96

Ray-triangle Intersection 90 62 94 97 74 98 89 94
Finite-time Lyapunow Exponent Field Calculation 77 56 95 94 59 82 85 84

Flow Map Calculation 91 35 60 92 75 81 81 88
Chunked Reduction 72 41 84 89 61 73 88 87

Perlin Noise Generator 94 17 81 73 83 49 84 85
Chunked Calculation of the Geometric Mean 68 45 81 92 54 81 94 93

Mersenne Twister Random Number Generator 79 41 91 89 67 72 90 91
Bytewise Integer Compression 77 39 90 94 70 69 89 95

Simulation of a Swinging Pendulum 20 75 20 20 19 70 58 76
1 Achieved performance compared to the maximum performance as percentage values as described in Section 5.

Table 2: Description of test cases used for model training and performance of various task partitioning
strategies.

To train and validate our model we use the set of codes
listed in Table 2. As shown in Figure 2(a), all training codes
are compiled with the Insieme source-to-source compiler and
their static program features are collected in a database. Af-
ter the compilation, the programs are executed with various
problem sizes (9 to 18 problem sizes, depending on the pro-
gram) and task partitionings, adding to the database infor-
mation about runtime features and execution times. The
set of explored task partitionings depends, as described in
Section 3.1, on the number of available devices in the system.

In order to generate the training patterns needed for the
model generation, we perform an exhaustive search on that
set, finding the task partitioning with the best execution
time. The size of the search space is defined by the number
of experiments multiplied with the number of possible task
partitionings.

For the number of training codes and the target archi-
tectures considered in our study, the search space consists
of 355 × 21 = 7455 elements, where 355 corresponds to all
problem size/program combinations and 21 is the number
of task partitionings.

For each combination of test case and problem size we
generate one training pattern that combines static and dy-
namic program features with the best performing task par-
titioning. Such task partitioning will then be used as target
value during the training of our model.

3.4 Building the Model
Based on the training patterns we build a model with

one input for each feature (listed in Table 1) and one out-
put, which represents the task partitioning predicted by
the model. In our framework the user can choose between
Support Vector Machines [12] and Artificial Neural Net-
works [12] (ANN). As shown in Table 4, SVMs have a much
lower training time, while ANNs introduce a lower over-
head during the deployment phase and show a higher per-
formance.

During the construction of the model we also evaluate
the effect of Principal Component Analysis [12] (PCA) on
the result. PCA can be described as the linear projection
that minimizes the average projection cost, defined as the
mean squared distance between the data points and their
projections [29]. In our case this means that a certain num-
ber of features is reduced to a smaller number of new fea-
tures in a lossy way, conserving as much of the original fea-
tures’ variance as possible. PCA can help to increase the
estimation accuracy of models. However, calculating the
PCA, which includes the calculation of the features’ eigen-
values and eigenvectors, introduces a notable overhead. This
means that applying PCA to all our features, which include
some values only available at runtime, would substantially
increase the execution time. In order to eliminate this addi-
tional overhead, we apply PCA only to the static program
features, leaving the runtime features unchanged. In this
way we move the overhead of calculating the principal com-
ponents from runtime to the source-to-source compilation
phase. The effect of PCA on our models’ performance is
described in Section 5.2.

4. EXPERIMENTAL METHODOLOGY
This section describes the test cases and the target archi-

tectures used in our experiments as well as the evaluation
methodology.

4.1 Test Cases
To evaluate the performance of our approach we used a se-

lection of 23 programs (see Table 2). These programs have
been drawn from OpenCL vendors example codes, appli-
cations from our department and VRC at the Universität
Stuttgart [28], and benchmark suites [13, 16, 10]. After
translating the OpenCL input program with the Insieme
Compiler, the Gnu Gcc Compiler version 4.6.3 was used to
convert the resulting code to binary.



Machine
Name mc1 mc2
CPU manufacturer AMD Intel
CPUs 2x Opteron 6168 2x Xeon X5650
#CPU cores (HT) 24 12 (24)
CPU frequency 1.9 GHz 2.67 GHz
#Parallel Ops (SP) 96 48
Peak Performance 364 GFLOPS 256 GFLOPS
Memory 32 GB 24 GB
Memory Bandwidth 83 GB/s 62 GB/s
Compiler GCC 4.6.3 w/ ”-O3”
Operating System CentOs 5.8
OpenCL version AMD APP SDK 2.7
GPU manufacturer Ati NVIDIA
GPUs Radeon HD5870 GeForce GTX480
#GPU cores 20 15
Core frequency 850 MHz 1401 MHz
#Parallel Ops (SP) 1600 480
Peak Performance 2.7 TFLOPS 1.3 TFLOPS
Memory 2 GB 1.5 GB
Memory Bandwidth 153 GB/s 177 GB/s
Connection PCIe 2.0 x16 PCIe 2.0 x16
OpenCL version AMD APP SDK 2.7 CUDA 4.1.1

Table 3: Experimental target architectures.

In order to examine the impact of problem sizes on task
partitioning we executed each benchmark with varying prob-
lem sizes on two target architectures. For each test case we
examined 9 to 18 different problem sizes (depending on the
amount of memory needed by the program), resulting in
355 training patterns. Each training pattern consists of the
static features of a program, its runtime features for a cer-
tain problem size as well as the best task partitioning for
the given program with the current problem size. To en-
sure a fair comparison between different task partitionings,
we measured the execution time of the kernels including the
memory transfer overhead [17]. For each task partitioning,
we executed a series of five experiments, recording the av-
erage execution time. The result has been validated with
the Student’s t test [4], ensuring reliable results with a con-
fidence level of 95%.

4.2 Experimental Setup
The experiments were performed on two different hetero-

geneous target architectures composed of three OpenCL de-
vices: two GPUs and two multi-core CPUs in a dual-socket
infrastructure. While both GPUs represent a separate de-
vice, the two CPUs are reported as a single OpenCL device.
The first platform, mc1, consists of two AMD Opteron CPUs
and two Ati Radeon GPUs, while the second, mc2, holds two
Intel Xeon CPUs and two NVIDIA GeForce GPUs. Table 3
gives a more detailed listing of the two systems’ character-
istics.

As already mentioned in Section 3.1 we use a set of task
partitionings. For the target architectures used in this study,
consisting of one CPU device and two GPU devices, we char-
acterize each task partitioning with a tuple of three num-
bers representing the percentage of the workload executed
on a specific device. The first number represents the por-
tion to be executed on the CPU while the second and third
number represent the percentage for the first and second
GPU, respectively. Task partitioning (100, 0, 0), for exam-
ple, means that the entire workload is assigned to the CPU,
while (0, 50, 50) means that the work is distributed evenly
among the two GPUs while nothing is assigned to the CPU.

The entire set of task partitionings P is constructed as fol-
lows:

X ={0, 10, 20, ..., 100}

P =
⋃
x∈X

{
(x, 100− x, 0), (x, 100−x

2
, 100−x

2
)
}

Where X is the set of different percentage values of the
workload considered to be executed by the CPU. The re-
maining workload is then executed by the first GPU or it is
distributed evenly among the two GPUs. The resulting set
P consists of 21 different task partitionings.

From this set P our runtime system tries to select the
optimal task partitioning using the prediction model as de-
scribed in Section 3. To evaluate the performance of our
approach we compare the execution times of a program with
two different task partitionings. The first task partitioning
is proposed by the Insieme Runtime System and the second
one is found by an exhaustive search over all task partition-
ings over the set P .

In order to evaluate the quality of our models we do a
leave-one-out cross validation [14] on all our training pro-
grams of the set C listed in Table 2. To evaluate the model’s
performance for a particular program c ∈ C, we train the
model with all programs except c. Obviously, this means
not leaving out only one training pattern, but all training
patterns related to program c (all different problem sizes).

5. EXPERIMENTAL RESULT
In this Section we report the performance result of our

approach. As performance metric we use the achieved per-
centage of the maximum performance, which can be reached
by applying the best task partitioning. We calculate it as
follows

s = tbest/tactual ∗ 100

where s is the achieved performance in percentage, tbest is
the execution time of the best task partitioning (identified
with an exhaustive search over all task partitionings used)
and tactual is the actual execution time of the selected task
partitioning. To combine the performance for several exper-
iments in one value (e.g. the performance for a specific test
case using different problem sizes), we simply calculate the
average of the performance across these experiments.

5.1 Performance Results
Depending on the target architecture, the problem size

and the program, it can be important to select a certain task
partitioning, whereas in other cases, several different task
partitionings may deliver similar good performance. For in-
stance, as can be seen in Figures 3(a) and 3(b), when ex-
ecuting matrix multiplication with large problem sizes it is
very important to distribute the workload over both GPUs.
Furthermore, for hybrid solutions it is not important if one
or two GPUs are used, since the CPU is always the limiting
factor. For smaller problem sizes, in particular for mc2, sev-
eral task partitionings yield good performance. In contrast
to that, on mc1 small matrices should be multiplied on the
CPU alone. The penalty for selecting a non-optimal task
partitioning for intermediate problem sizes on mc1 is less
severe than on mc2.
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Figure 3: Performance behavior of different programs on two target architectures with different problem
sizes (e.g. 32768 work items). On the x-axis the various task partitionings are listed while the y-axis shows
the achieved performance in %, relative to the best task partitioning (see Section 5).

The situation is different when running our integer com-
pression implementation. Figure 3(c) shows that on mc1
with a problem size of 16384 work items, the CPU substan-
tially outperforms all other task partitionings, while on mc2
the difference is much smaller and all task partitionings de-
liver 40% or more of the maximum performance, as revealed
in Figure 3(d). For the larger problem sizes, on both target
architectures a hybrid task partitioning delivers the best per-
formance. However, the best performing task partitioning
is different for each problem size and target architecture. In
this test case, using a heterogeneous distribution can reduce
the execution time by up to 23% over any homogeneous task
partitioning (including the dual GPU task partitioning).

As shown in Figure 1, there are cases in which a single
GPU performs better than two GPUs. This behavior can
be observed for some data transfer dominated scenarios and
is mainly related to the shared connection of the GPUs to
the CPU’s main memory.

From the 355 training patterns considered for this study,
more than 25% deliver best performance when using a hy-
brid task partitioning.

5.2 Comparison of Different Techniques
For the Insieme Runtime System we tested a variety of

models, generated either with a Support Vector Machine [12]
(SVM) or an Artificial Neural Network [12] (ANN). For
both techniques we used the implementation provided by
the Shark library [20]. In this section, we compare the per-
formance of our model-guided runtime system with the per-
formance of the two default strategies which use either one
CPU or one GPU. These are the only available options when
using the unchanged input programs, without the generation
of multi-device code by the Insieme Compiler.

Furthermore, without using the Insieme framework, the

Task Par- Execution Time
titioning Training (sec) Deployment (ms) Performance1

Approach mc1 mc2 mc1 mc2 mc1 mc2 Avg.

CPU only - - - - 73 58 65.5
GPU only - - - - 48 77 62.5
Random - - 0.12 0.09 44 55 59.5

SVM2 8 8 0.31 0.23 80 78 79.0
ANN2 248 421 0.07 0.07 84 84 84.0

SVM3 22 19 0.28 0.18 82 85 83.5
ANN3 317 201 0.07 0.06 86 89 87.5
1 Percentage of maximum performance as described in
Section 5.
2 Using all static features listed in Table 1
3 Using static features generated form the static features
listed in Table 1 with PCA

Table 4: Properties and performance of different
machine learning algorithms.

challenging task of choosing the most appropriate device is
left to the user.

We also show the advantage of our approach over the ex-
pected performance of a random scheduler, calculated by
taking the average execution time over all task partitionings
in our set P (described in Section 4.2).

Table 4 shows the average performance for a cross valida-
tion over all test cases in Table 2 using different scheduling
approaches. On mc1 the CPU-only strategy outperforms
the GPU-only strategy while on mc2 we observe the op-
posite behavior. This underlines the complexity of choosing
the most appropriate device in a heterogeneous environment.
On average, over the two target architectures, both default
strategies fail to reach 70% of the maximum performance.
In most cases there are only few well performing task par-
titionings while the others show rather poor performance.
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Figure 4: Error curves showing the means squared error after each training iteration of our best performing
ANNs on our two experimental target architectures.

Therefore, the random scheduler is not a good solution and
even lags behind the two default strategies.

Our SVM approach uses the MulticlassSVM implementa-
tion of [20]. As kernel function we used Radial Basis Func-
tion [12] (RBF). This kernel function is the most widely used
for classification with SVMs. The parameter γ of the RBF
was set to 2.5, the regularization parameter c was set to
15 for both positive and negative examples. We observed,
that the performance does not vary more than 4 - 5% when
changing these values, which demonstrates the robustness of
SVMs with regard to these parameters.

The ANNs used for our study are three-layer feed-forward
perceptron networks with a sigmoid activation function and
fife neurons in the hidden layer [12]. All three layers are fully
connected with their neighboring layers. For our ANN we
use the FFNet implementation of [20]. All weights inside an
ANN are initialized randomly within the same range, equal
to +/− 0.125.

As training algorithm we used the conjugate gradient met-
hod provided by Shark, which automatically adapts the train-
ing rate. To determine the number of training iterations for
the neural network, we use the early stopping method which
terminates the training automatically after a certain level
of convergence is reached. The training data is split into a
training set, used to train the model, and a validation set
which is not used for training. The level of convergence is
measured by observing how the error on the validation set
evolves over consecutive training iterations [12]. Depending
on what test case is removed from the training set to per-
form the cross validation, the training is stopped after 36 to
749 iterations. The training times shown in Table 4 refer
to the training for all test cases without cross validation.
Figure 4 shows how the mean squared error evolves on the
training set and the validation set during the training (with-
out cross validation) on both of our target architectures us-
ing our best performing ANN. In both cases the error curves
on the training set are very smooth and converge to a min-
imum. As usual, the error curves on the validation set are
more uneven, but they also converge during the training.
Surprisingly, in both cases the mean squared error on the
validation set was lower than the one on the training set
when the training was stopped.

As explained in Section 3.4, we apply PCA to our static
program features. On both target architectures we use the
first n principal components of the static code features listed
in Table 1 in order cover 100% of the static program fea-

tures’ total variance (calculated in single precision floating
point). For the static features used on mc1, this resulted in
using only the first principal component. For the ones used
on mc2, two principal components were needed to cover all
their variance. Our results in Table 4 clearly show that PCA
improves the accuracy of our models and shortens the de-
ployment times. PCA is only applied to static code features,
so it is not part of the execution time of the programs. It is
noticeable that the models used on mc2 benefit more from
the PCA than the models used on mc1. This is most likely
related to the higher number of static code features used on
mc2, which can be reduced to one quarter of the original
number using PCA without loosing any information.

Our task partitioning approach which assigns one por-
tion of the task to each device, has some significant ad-
vantages over a dynamic scheduler. A dynamic scheduler
has to split a task into a large amount of small chunks.
At the beginning of the execution, each device receives one
chunk. When a device has finished its assigned work, it will
receive another chunk until the entire task has been pro-
cessed. The chunk size is a very important factor for such
an approach. Smaller chunks are better for load balancing,
but they reduce the parallelism inside one chunk and suffer
from higher data transfer and kernel invocation overhead.
Larger chunks reduce the load balancing, but also the num-
ber of kernel invocations and data transfers, resulting in a
lower overall overhead. On the one hand, a scheduler for
OpenCL task partitioning should use large chunks, because
the kernel invocation and data transfer overhead are rela-
tively high, compared to the execution time. For example,
executing two vector addition chunks with a size of 65536 on
a GPU in mc1 takes 71% longer than running one chunk of
twice the size. On the other hand, a scheduler for OpenCL
task partitioning requires small chunks, due to the high dif-
ferences in performance of the heterogeneous devices. As it
can be seen in Figure 3(a), with a problem size of 838868
running only 10% of the task on the CPU reduces the per-
formance to 20% of the performance that can be reached
by distributing the task evenly over both GPUs. Based on
this observation, we believe that dynamic schedulers cannot
efficiently solve the task partitioning problem as described
in this paper.

5.3 Analysis of the Results
In Table 2 we compare the performance of the task par-

titionings predicted by the Insieme Runtime System based



on an SVM and ANN using PCA (listed in Table 4), with
the performance delivered by the CPU/GPU only strat-
egy for each code and each target architecture individually.
For almost all test cases, the CPU-only strategy delivers a
higher performance on mc1 than on mc2, while the GPU-
only strategy usually performs better on mc2. This is re-
lated to the weaker performance of the GPU (Ati Radeon
HD5870) in mc1. Its VLIW architecture with very wide in-
struction width and high branch miss penalty would require
specific fine-tuning of each code to perform well [33]. How-
ever, none of our test cases was tuned for a specific device.

On average considering both target architectures, our ma-
chine learning guided approaches deliver a significant better
performance than the two default strategies for most test
cases. Our models are capable of representing the target
architecture’s characteristics in order to find performance
efficient task partitionings. Our approaches also determine
which device is to be favored for every specific target ar-
chitecture. This is underlined by the fact that our machine
learning guided approaches show their worst performance
for atypical test cases, i.e. test cases which perform better
on the GPU than on the CPU on mc1 (e.g. Simulation of a
Swinging Pendulum) or vice versa on mc2 (e.g. Symmetric
Rank-2k Operations on mc2 ).

In most cases the ANN achieves better performance than
the SVM. The ANN is also faster to predict the task par-
titioning of a program, as shown in Table 4. For both of
our approaches the time to predict the task partitioning is
negligible (in the range of 0.06 to 0.31 ms). The down-
side of ANN is the relative long training time as well as the
associated sensitivity regarding the tuning parameters like
network structure or weight initialization range. SVMs do
not have this many tuning parameters and the quality of the
result does not depend that much on the parameters’ value.

6. RELATED WORK
In recent years, heterogeneous systems have received great

attention from the research community. Several projects [32,
6, 9, 31, 24, 23] mainly focused on OpenMP, CUDA, and
OpenCL extensions, investigated how to facilitate the pro-
gramming of clusters with heterogeneous nodes. Our work,
while following the same idea, targets an automatic manage-
ment of multiple devices in a single node. A similar study
was done by Chen et al. [11]. The authors introduce an au-
tomatic parallelization process to use multiple GPUs. This
work targets mainly the analysis of access patterns for data
decomposition, showing that many applications can be par-
allelized automatically. Our approach, based on a similar
analysis, not only derives the data partition schemes, but
also provides a solution for optimal task partitioning on het-
erogeneous devices.

Extensive work has been done to address mapping or
scheduling of tasks to heterogeneous systems. Several frame-
works [32, 8, 25] have been created to support the developer
in the use of all available computing resources of a heteroge-
neous system. Although these studies propose several pos-
sible solutions to the problem, they are mostly based on
performance estimations provided by the user. On the con-
trary, our approach is automatic and does not require any
additional user-supplied information. Furthermore, these
approaches focus on optimizing the scheduling of multiple
tasks, assuming that several parallel tasks are available. Our
system is designed to optimize the execution of a single task

and can therefore optimize also programs with a single task.
Other works have investigated the problem of automatic

task partitioning. Luk et al. [26] introduced an adaptive
mapping approach based on a regression model. Their sys-
tem considers every first run of a program as a training
run that can be then used to determine the computation-to-
processor mapping for the same program with a new input
problem. This approach expects that a program is trained
once and then used many times afterward. In contrast to
our work, they only show results of one target architecture
equipped with only one CPU and one GPU.

A similar approach was adopted by Kai et al. [21]. They
proposed a holistic energy management framework for het-
erogeneous architectures which dynamically splits and dis-
tributes the workload over GPU and CPU based on the ob-
served performance. Their algorithm dynamically adjusts
the task partitioning based on the runtime difference be-
tween devices. Our approach, on the other hand does not
require any profiling or training runs of the program to opti-
mize it. We can derive an optimized task partitioning during
the first run of a new program by using a previously, offline
trained model.

Hong et al. [19] proposed MapCG, a framework that
supports source code level portability between CPU and
GPU. By incorporating a MapReduce programming model,
a program can be compiled and executed on either CPUs or
GPUs without modification. However, they observed that
CPU/GPU combinations did not yield significant perfor-
mance improvement for the 8 test cases they examined. In
contrast to this work, as already described in Section 5.1, on
our target architectures, we observed the important role of
the hybrid task partitioning to achieve the best performance
for our test cases.

Grewe et al. [18] developed a purely static task parti-
tioning approach based on predictive modeling and program
features. Starting from a multi-device OpenCL code, the au-
thors predict the partitioning of a task with a machine learn-
ing model based on static features analysis for fixed problem
sizes. Our work uses a similar machine learning approach,
but combines static program features detected at compile
time with dynamic features collected at runtime that allow
the adaptation of the task partitioning to different problem
sizes. We test our approach for different target architec-
tures emphasizing the importance of the problem size and
the hardware configuration for the tuning of the task parti-
tioning. Furthermore, our system is not limited to a CPU-
GPU configuration but can handle an arbitrary number of
heterogeneous devices in a single node.

7. CONCLUSION
This paper proposes a novel approach for the automatic

distribution of OpenCL programs on heterogeneous systems.
It consists of a source-to-source compiler, which translates a
single-device OpenCL program into a multi-device OpenCL
program and a runtime system which distributes the work-
load over all heterogeneous resources using a machine learn-
ing based, offline generated prediction model.

Our measurements demonstrate that the optimal task par-
titioning depends on the program, the target architecture,
and the problem size. To accommodate this observation, we
use two classes of features: static program features, whose
values can be extracted from the source code at compile
time, and problem size dependent runtime features, whose



values are collected during program execution.
We compared different machine learning techniques, show-

ing that ANNs can reach a higher overall performance, while
SVMs can be trained much faster and are less sensitive with
respect to their intrinsic parameters. We observed, that the
importance of features varies between different platforms.
We also demonstrated that PCA applied to the static pro-
gram features increases the models’ accuracy while reducing
its runtime overhead.

To demonstrate the portability of our system, all tests
were performed on two different target architectures. On
average, over those target architectures, the Insieme frame-
work achieves up to 87.5% of the optimal performance across
23 programs. Our approach outperforms the default strate-
gies of using only the CPU or only the GPU, which achieve
65.5% and 62.5% of the optimal performance, respectively.
In addition, we outperform a random heterogeneous sched-
uler which yields to only 49.5% of the optimal performance.

Future work will extend our approach with the capabili-
ties to accurately analyze and efficiently distribute device-
optimized multi-kernel OpenCL programs on heterogeneous
systems. Furthermore our findings can be extended be-
yond the single computing node by taking advantage of
the libWater distributed runtime system [15] which allows
OpenCL programs to transparently address devices within
a distributed cluster system like if they were local.
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