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Abstract

Ray tracing algorithm is widely used for rendering images aiming at an high real-
ism. Speeding up ray tracing for interactive use with parallel architectures has received
a big impulse during last years. Despite several techniques are employed in order to
amortize communication costs and manage load balancing, they still represents a bot-
tleneck to the scalability. We consider a new way of manage load balancing based
on adaptive subdivision, assuring higher scalability and performance, compatible with
commonly used balancing techniques such as work stealing and work sharing.

1 Introduction

In computer graphics, rendering is the synthetic production of realistic images
from a mathematical description of a scene. Ray Tracing algorithm [1] is a
powerful rendering algorithm integrating reflection, refraction, hidden surface
removal and shadows into a single model. Ray Tracing, in the simplest form,
traces a ray for each pixel, from an eye or view point through the pixel and into
the scene. Secondary rays can occur e.g. when rays hit reflective or refractive
surfaces, or for shadow, generating a huge computational cost.

Parallel Ray Tracing. Considerable efforts have been spent in order to
investigate new ways to overcome the high computational demands of Ray
Tracing [12]. Improving performance to interactive rates requires to combine
highly optimized ray tracing implementations with massive amounts of compu-
tational power. Thanks to the recent advances in both hardware and software,
it is now possible to create high quality images at interactive rates on com-
modity PC clusters (see [13]). Cluster of workstation have been demonstrated
successful in the context of Parallel Ray Tracing (see e.g. [10, 9, 11]), but
they still require some efforts to manage load balancing and communications
hiding.

Parallel Ray Tracing has been defined an “embarrassingly parallel” prob-
lem [5] because no particular effort is needed to subdivide problem in tasks
and there is no strict dependency between parallel tasks. Each task can be
computed independently from every other task in order to achieve a good
speed up.
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There are two different approaches in designing a Parallel Ray Tracer:
object-based and screen-based [3]. In the objects-based approach the scene
is distributed among clients. For each ray casted, the clients forward rays to
the responsible of the scene area. In the screen-based approach the scene is
replicated on each client and the rendering of pixels is assigned to different
clients. The second approach is the one investigated in this paper and in this
context each tile, a rectangular area of the screen space, represents a task,
the Principal Data Item (PDI). Instead the global scene, the Additional Data
Item (ADI), is replicated on all worker [3].

A Parallel Ray Tracing system can be synchronous, if after each frame
there is visualization barrier (e.g. Bigler et all. in [8])., or asynchronous if
rendering is performed asynchronously to the application (e.g. Wald et all. in
[13]).

Outline. In this paper we investigate a new approach on affording load bal-
ancing in the context of Parallel Ray Tracing. We propose a screen-based
synchronous implementation where load balancing is afforded during the sub-
division phase instead during the assignment phase. Our approach provides an
adaptive subdivision of the whole problem in balanced task and is compatible
with well-known load balancing strategies. Indeed our strategy is based on a
traditional demand driven ray tracing. This parallelization suits the Master-
worker paradigm: a master node subdivides the whole job into a set of tasks
(tiles) and then each task is sent to a worker node, which renders the tile
and sends back the partial image. Our parallel implementation is tailored for
distributed memory architectures such as a cluster of workstations, but our
work can be easily extended to shared memory architectures.

2 The Load Balancing Problem

In parallel computing, the key to achieve a good speedup is to keep processors
supplied with tasks, so that the resulting scheduling is as greedy as possible.
Assuring a perfect load balancing between processors is not easy if tasks have
strongly different computing time.

Ray Tracing is a time consuming process and the rendering time of each
pixel is influenced by a multitude of factors. The are several sources of un-
balancing between pixels computing time, such as shading algorithms, accel-
eration data structure queries, anti aliasing techniques, texture accesses. We
experienced that shading, and in particular the number of secondary rays
generated by a surface, can heavily influence the pixel computing time.

We remark that in a screen-based parallelization, unbalancing between
pixel cause unbalancing between task.

2.1 Granularity of the decomposition

An important choice in the parallelization is the granularity of the subdivision
of the image in tiles. The relationship between m, the number of tiles, and n,
the number of processors stongly affects the performance.
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There are two opposite, driving forces that act upon this design choice.
The first one is concerned about the load balancing and requires m to be
larger than n. A simple and common strategy to obtain a fair load balancing
is to increase the number of tiles, so that the complexity of a zone of the scene
is shared among different nodes.

On the opposite side, several considerations would ask for smaller m. An
algorithm that has large m requires more communication costs than an algo-
rithm with smaller m, both in latency (more messages) and bandwidth (com-
munication overhead for each message). Another consideration that would
require small m is spatial coherence. Since two rays will follow similar path if
they are close, in order to make an effective usage of the local cache for each
node, it is important that the tiles are large enough, so that each worker can
exploit spatial coherence of tiles, having a good degree of (local) cache hits
(see [7] for a more detailed discussion on coherence in Parallel Ray Tracing).

A common strategy in parallel ray tracing implementations is to subdivide
image in equally sized tiles, then use some load balancing strategy in schedul-
ing (see [8, 10, 9, 11]). If load balancing is still a problem, this approach sug-
gests to use a finer granularity. However a fine granularity introduces an high
overhead, especially for high unbalanced scenes. Particularly in a distributed
memory system the choice of the granularity is critical due the higher cost of
the communication.

3 Adaptive Subdivision Techniques

We introduce a new approach on affording load balancing focused on subdivi-
sion.

Our solution (see Figure 1) introduces a new component in the system
design, the predictor, that is able to do an estimate of the computation time
need by a tile. The use of the estimate will be used in order to obtained a
more balanced subdivision (i.e. an adaptive subdivision).

The idea is that a more balanced subdivision improves both load balanc-
ing and performances. Kruskal and Weiss [4] investigated a theoretical model
where they show how variance among task compute time, hence load unbal-
ancing, affects performance.

Figure 1: Our system design introduces a predictor in the subdivision (left).
A common system usually lack of this component (right).
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Predictive Heuristic. The design of the parallel system is independent of
how the prediction is obtained. In our system we exploit temporal coherence
among successive frames in order to obtain a per-tile estimate of the computing
time. Given a tile, we suppose that the computing time required by the tile
in the frame t is comparable with the time spent in the frame t + 1.

This estimate works fine on our test scenes. However it presents three
main problems: it can be wrong for strongly dynamic scenes; it can occur on
discretization problems if tiles are extremely small; and it can not be used for
the first frame. These problems suggest the introduction of new predictive
heuristics in order to have a more scene-independent system.

A balancing schema: the PBT. In order to help balancing we present a
balancing schema based on a Prediction Binary Tree (PBT).

The PBT is in charge of direct the subdivision in balanced tiles. A PBT
T stores the current subdivision in tiles in a full binary tree with exactly m
leaves, in which each (internal) node has 2 children. The root of T , called r,
represents the complete image (i.e., the main tile). The (two) children of an
internal node v store the two halves of the tile represented by v. Consequently,
each level of T represents a partition of the image. Moreover, each internal
node v represents a tile which is the sum of the tile assigned to the leaves of the
tree rooted in v and consequently, the leaves of T (henceforth L(T )) represents
a partition of the image. In order to maintain a good spatial coherence and
minimize tasks interaction, the children of an internal node v which belongs
to an odd (resp. even) level of T are obtained halving the tile in t along the
horizontal (resp. vertical) axes. This assure that tiles have an almost-square
shape (i.e. one dimension is at most twice the other). Each leaf ℓ ∈ L(T ) also
stores two variables: e(ℓ) that is the estimate of the time for computing tile
in ℓ and t(ℓ) that is time used by a worker to compute (in the last frame) the
tile in ℓ. Figure 2 gives an example of a PBT, with the corresponding image
partition on the left.

Updating the PBT. The PBT stores the subdivision in tiles of the whole
image. Each leaf of T is a task to be assigned to a worker. At the end of
each frame, the PBT receives (with the image rendered) also the information
about the time that each worker has spent on it. This time is received as t(ℓ)
for each leaf, and is used as estimate by copying it into e(ℓ). By using the
previous frame computing times as estimate, the PBT is efficiently updated
for the next frame. Here we describe a provably effective and efficient way of
changing the PBT structure so that the next frame can be executed (given the
temporal coherence) more efficiently, i.e. equally balancing the load among
the processors.

We, first, define the variance as a metric to measure the (estimated) com-
putational unbalance that is expected given the subdivision provided by the
PBT T .

σ2
T =

1

m

∑

ℓ∈L(T )

(e(ℓ) − µT )2,

where e(ℓ) represents the time estimated to render the tile corresponding to
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Figure 2: An example of a PBT tree: the frame on the left has been rendered
with the computation times (in ms) for each tile shown on the leaves.

the leaf ℓ of T and µT is the estimated average computational time, that is,
µT = 1

m

∑
ℓ∈L(T ) e(ℓ). Clearly, the smaller the variance σ2

T
is, the better is T ’s

balancing.
Given a PBT T at the end of a frame, the estimated computing time

associated to each leaf, e(ℓ), is taken by the computing time t(ℓ) at the frame
just rendered; then, we use a greedy algorithm, the PBT −Update, that finds
the new PBT T ∗. The idea of the algorithm PBT − Update is to perform
a sequence of simultaneous split-merge operations, that consists in splitting a
tile whose estimated load was “high”, and merge two tiles (stored at sibling
nodes) whose (combined) estimated load is “small”.

Pseudo code, correctness and convergence of the PBT −Update algorithm
can be found in [6].

The design of the parallel system is also independent from the balancing
schema and it can be changed without affect the rest of the system (e.g., using
an interpolation-based schema instead of the PBT).

Overhead of the approach. The time spent by the master node in evalu-
ating a new subdivision schema from a prediction is pure overhead introduced
by our approach. In our implementation this overhead corresponds to the time
spent in subdividing the image in tiles and updating the PBT. Note that this
time is serial and affects performance once per frame. However results show
that this overhead is negligible (usually few ms) compared with the improve-
ment in balancing and performance (see Section 4 and Figure 7).

Use of adaptive subdivision with known balancing techniques. Many
load balancing strategies are used in Parallel Ray Tracing. They mainly focus
on scheduling and does not involve the subdivision phase.
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If only a single tile is assigned to each client at any time, a client runs idle
between sending its results back to the server and receiving the next tile to
be computed. With task prefetching, it is possible to avoid these latencies, by
sending several prefetched tiles in advance to each client. Task prefetching is
suitable also if the subdivision schema is adaptive.

A popular and practical method to handle load balancing in Parallel Ray
Tracing is work stealing [2], in which processors needing work steal tasks from
other processors. Also this method only focus in scheduling and can be easily
combined with our schema.

Another interesting scenario is the coupling of a distributed load balancer
(e.g. based on work stealing) with our balancing schema.

4 Results

To verify the effectiveness of the adaptive subdivision schema in load balancing
we employed a distributed memory system, a cluster of workstation, and test
scenes with remarkable unbalancing between tiles.

Our hardware test platform was cacau, a NEC Xeon EM64T Cluster avail-
able at HLRS High Performance Computing Center at the Stuttgart Univer-
sität. For our test we used up to 64 nodes, each equipped with 2 Intel Xeon
EM64T processors and 1 GB of main memory, interconnected with a Infini-
band 1000 MB/s.

The test scenes were two modified version of the standard ERW6 test
scene, with about one thousand primitives (see Figure 3). The test scenes
have different shading properties and unbalancing is due to different shading
setting. In both test scenes, we have a predefined walk-through of the camera
around the scene, with movements in all direction and rotations too. The
image resolution is 512x512 pixels. We obtained similar results in the two
test, so in the following we refers to the result of the first test scene.

Serial Ray Tracing implementation trace a ray at once. A kd-tree has been
used due on acceleration data structure, build with well known Surface Area
Heuristic. The kd-tree implementation also provides a fast traversal by using
a cache friendly data layout. Our implementation uses Intel SSE extensions
for speed up shading, by wrapping a RGB color in a 128 bit word. The parallel
version use MPI for node communications, and is based on the master-worker
paradigm.

Scalability. We tested our schema based on the PBT with a normal regular
subdivision schema with 2, 4, 8, 16, 32 and 64 processors, in order to measure
the effective scalability of our strategy (see Figure 6). The tests shows that
our schema works always better than the regular, and it presents almost linear
scalability up to 32 processors. However the tests also show that with more
than 32 processors the use of adaptive subdivision is not enough in order to
assure scalability.

Optimal granularity. We also tested several test set in order to obtain the
optimal granularity (i.e., the optimal choice of m, the number of tiles) with 2,
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4, 8, 16, 32 and 64 processors (see Figure 5). The rationale behind this test
is to determinate how our schema affects the tuning of the granularity in the
parallel implementation, compared with a simple regular subdivision schema.

Test results show involve several interesting considerations. The optimal
granularity for the PBT comes with a lower number of tiles, in respect of
the normal regular approach. In particular the PBT work better with coarser
tiles, introducing beneficial effects cause the lower overhead of communication.
For the same reasons, the PBT become more effective when the test asset
need a finer granularity, due to the high number of processors and the strong
unbalancing.

Parallel render time analysis. The last test set is focused on how the
whole compute time (i.e., the parallel rendering time) is spent. Out purpose is
to determinate how unbalancing affects performance, the ratio between time
spent by the workers in local rendering and communications, how much time
is spent by the master node in serial code. Figure 7 shows the test results
for 16 and 32 processors at different granularity. The time spent in updating
the PBT is proportional to m, hence to the granularity and the number of
processors, but in our test is always lower than 5 ms. Thus the overhead by
the adaptive subdivision is small compared with the gain in balancing.

5 Conclusions

In this paper we have described a load balancing technique for Parallel Ray
Tracing that is based on an adaptive subdivision of the domain in balanced
tasks. Our strategy introduces in the system design a predictor, able to do
an estimate of the compute time need by a task. In our implementation, we
divide the image-space in balanced tasks by using a Prediction Binary Tree,
exploiting temporal coherence between frames to obtain the estimate.

We have showed that our strategy provides a better scalability compared
with regular subdivision schema. The optimal granularity for different number
of processors (see Figure 5) needs a lower number of tiles m, compared with a
regular subdivision schema. Moreover the overhead introduced by the adaptive
subdivision schema is small compared with the gain in balancing and, hence,
assure better performance.

It maybe worth interesting to integrate our adaptive subdivision with other
well-known balancing schema. For example, by using work stealing with adap-
tive subdivision we expect beneficial effect due to the smaller number of work
steals.

We suggest to use similar adaptive subdivision also in different problem
(see [6]).
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Figure 3: Images generated using our parallel ray tracing.
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Figure 4: An example of adaptive image space subdivision. The most expen-
sive pixels are located between two reflective surfaces, because rays bounce
between them. The cheaper rays simply hit a diffusive surface (e.g., bricks
wall). The subdivision adapts to the estimated cost, by further splitting ex-
pensive tiles.
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Figure 5: Optimal subdivision granularity with both regular (red) and adap-
tive subdivision with the PBT (blue). Test done with 2, 4, 8 , 16, 32 and
64 processors. The horizontal axis represents the number of tiles, whereas
vertical axis represents rendering time.
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Figure 6: Scalability. Comparing regular subdivision (red), adaptive sub-
division with the PBT (blue), linear theoretical speedup (green). Adaptive
heuristics shows a close to linear speed-up up to 32 processors.
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Figure 7: Contributions in rendering time with 32 (up) and 64 (down) pro-
cessors, at different granularities, with both adaptive and regular subdivision
techniques. The total rendering time is split in: the time spent in subdivi-
sion (i.e. update the PBT for adaptive subdivision); the maximum per-node
compute time, such as an estimate of the load balancing; the remaining time,
mostly due by communications. Showed render times are the average between
a test scene of 600 frames.
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