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ABSTRACT
Dynamic voltage and frequency scaling (DVFS) is an important
solution to balance performance and energy consumption, and
hardware vendors provide management libraries that allow the
programmer to change both memory and core frequencies. The
possibility to manually set these frequencies is a great opportunity
for application tuning, which can focus on the best application-
dependent setting. However, this task is not straightforward be-
cause of the large set of possible configurations and because of the
multi-objective nature of the problem, which minimizes energy
consumption and maximizes performance.

This paper proposes a method to predict the best core and mem-
ory frequency configurations on GPUs for an input OpenCL kernel.
Our modeling approach, based on machine learning, first predicts
speedup and normalized energy over the default frequency configu-
ration. Then, it combines the two models into a multi-objective one
that predicts a Pareto-set of frequency configurations. The approach
uses static code features, is built on a set of carefully designed micro-
benchmarks, and can predict the best frequency settings of a new
kernel without executing it. Test results show that our modeling
approach is very accurate on predicting extrema points and Pareto
set for ten out of twelve test benchmarks, and discover frequency
configurations that dominate the default configuration in either
energy or performance.

CCS CONCEPTS
• Computer systems organization → Parallel architectures;
• Hardware→ Power and energy.
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1 INTRODUCTION
Energy consumption is a major concern of today’s computing plat-
forms. The energy consumed by a program affects the cost of large-
scale compute clusters as well as the battery life of mobile devices
and embedded systems. Modern processors provide a number of so-
lutions to tackle power and energy constraints such as asymmetric
cores, power and clock gating, and dynamic voltage and frequency
scaling (DVFS). The latter, in particular, is very effective in improv-
ing energy efficiency until it reaches a voltage and frequency point
that is close to the threshold voltage; after that point, the energy
efficiency decreases again [15].

In this context, graphics processing units (GPUs) represent an
interesting scenario as they provide high performance, but they
also consume a considerable amount of power. Fortunately, modern
GPUs implement DVFS. For instance, the NVIDIA Management
Library (NVML) [22] provides a way to report the board power
draw, power limits, and to dynamically set both core and memory
frequencies. Being able to tune core and memory frequencies is
very interesting: different applications may show varying energy
consumption and performance with different frequency setting;
e.g., a memory-bounded application may benefit of core down-
scaling with reduced energy consumption at the same performance.
However, manually performing such tuning is not easy. For example,
the NVIDIA GTX Titan X supports four memory frequencies (405,
810, 3304, and 3505 MHz) and 85 core frequencies (from 135 to
1392 MHz), with a total number of 219 possible configurations
(note that not all memory-core combinations are supported; e.g., is
not possible to have both maximal core and memory frequency).
Moreover, while energy-per-task is the metric to be minimized,
we also want our programs to deliver high performance. These
two conflicting goals translate into a multi-objective optimization
problem where there is no single optimal solution, but instead a
set of Pareto-optimal solutions, each exposing different trade-off
between energy consumption and performance. This work aims at
predicting the best memory and core frequency configurations of
an input OpenCL kernel.

1.1 Motivation
Predicting the best frequency configurations is challenging for dif-
ferent aspects. The large number of settings makes it impractical to
perform an exhaustive search, in particular if it has to be performed
on many applications. At the same time, the tuning space of such
bi-objective problems present some challenging properties.

Figure 1 shows speedup and normalized energy consumption
for two examples: k-NN and MT (Mersenne Twister). These two
applications have been chosen to represent very different behaviors,
but the insights apply to all the tested applications.

https://doi.org/10.1145/3337821.3337833
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(a) k-NN Speedup
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(b) k-NN Energy Consumption
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(c) k-NN Multi-objective
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(d) MT Speedup
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(e) MT Energy Consumption
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(f) MT Multi-objective

Figure 1: Speedup (a,d), normalized energy consumption (b,e) and both (c,f) of two applications with different memory and
core frequency.

We tested the four memory settings mentioned above, labeled
for simplicity L, l, h and H, each with all supported core frequencies.
The default setting (mem-H and core at 1001 MHz) is at the intersec-
tion of the green lines. In terms of speedup (Fig. 1a), k-NN benefits
greatly from core scaling. However, this is not true for MT (Fig. 1d),
where increasing the core frequency does not improve performance,
while selecting the highest memory frequency (mem-H) does. This
behavior is justified by the larger amount of memory operations.

On the other hand, (normalized) energy consumption behaves
differently. In k-NN (Fig. 1b), for three out of four memory con-
figurations, normalized energy is similar to a parabolic function
with a minimum point in [885,987] MHz: while increasing the core
frequency, first the energy decreases as the computational time is
reduced; but then, the higher frequencies have an impact on en-
ergy in a way that it does not compensate for the improvement on
speedup. The lowest memory configuration (mem-L) seems to show
a similar behavior; however, we do not have data at higher core
frequencies to validate it (core frequencies larger than 405 MHz are
not supported for mem-L; details in Fig. 4a). Moreover, this behavior
depends on the kernel: e.g., in MT (Fig. 1e), the increase of energy
consumption with higher core frequencies is larger than k-NN.

Figure 1c and 1f show both energy and performance: as they
behave differently, there is no single optimal configuration. In fact,
this is a multi-objective optimization problem, with a set of Pareto-
optimal solutions. It is important to notice that the baseline default
configuration (black cross) may be not Pareto-optimal (Fig. 1c) or
be only one of more dominant solutions (Fig. 1f). This paper starts
from this observation to derive a multi-objective model that tries
to automatically predict Pareto-optimal frequency configurations
of a new kernel.

1.2 Contributions
The focus of this research is two-fold. First, we analyzed how nor-
malized energy and speedup behave on GPUs applications. The
analysis, based on a large set of codes including real applications
and synthetic micro-kernels, aimed at discovering which program
properties, in particular static code features, affect the energetic
and performance behavior of a kernel.

The insights of this analysis motivated the design of a predictive
model that is able to select the best (hopefully Pareto-optimal) fre-
quency configurations in terms of normalized energy and speedup.
The predictive framework is purely based on static information
extracted from the input OpenCL kernel. Thus, once the model is
built on a set of carefully-designed micro-benchmarks, it is capable
to quickly derive the best configurations for any new application.

This work makes the following contributions:

• An analysis of the Pareto optimality (performance versus en-
ergy consumption) of GPUs applications on a multi-domain
frequency scaling setting on an NVIDIA Titan X.
• A modeling approach based on static code features that pre-
dicts core and memory frequency configurations, which are
Pareto-optimal with respect to energy and performance. The
model is built on 106 synthetic micro-benchmarks. It pre-
dicts normalized energy and speedup with different ad hoc
methods, and then derives a Pareto set of configurations out
of the individual models.
• An experimental evaluation of the proposedmodels on twelve
test benchmarks on an NVIDIA Titan X, and a comparison
against the default static settings.
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2 RELATEDWORK
Energy-performance modeling has received great attention from
the research community. Mei et al. [21], in particular, wrote a sur-
vey and measurement study of GPU DVFS. Ge et al. [9] applied
fine-grained GPU core frequency and coarse-grained GPU mem-
ory frequency on a Kepler K20c GPU. Tiwari et al. [27] proposed
DVFS strategy both in intra-node and inter-node to reduce power
consumption on CPU.

Much work focuses on modeling one single objective, either en-
ergy or performance. In terms of energy efficiency, a number of opti-
mization techniques have been recently proposed [3, 12, 19, 20, 26].
Among them, Hamano et al. [12] proposed a task scheduling scheme
that optimizes the overall energy consumption of the system. Lopes
et al. [19] proposed a model that relies on extensive GPU micro-
benchmarking using a cache-aware roofline model. Song et al. [26]
proposed Throttle CTA Scheduling (TCS), which reduces the number
of active cores to improve energy-efficiency for memory-bound
workloads.

In the domain of performance, many evaluation methodologies
based on different architectures have been proposed [13, 17, 24].
Approaches [23, 28] to predict performance by taking DVFS into
consideration have been discussed. Kofler et al. [16] and Ge et
al. [8] proposed a machine learning approach based on Artificial
Neural Networks (ANN) that automatically performs heterogeneous
task partitioning. Bhattacharyya et al. [2] improved performance
model by combining static and dynamic analysis. Mesmay et al. [6]
converted online adaptive libraries into offline by automatically
generating heuristics. ϵ-PAL [32] proposes a machine learning iter-
ative adaptive approach that samples the design space to predict a
set of Pareto-optimal solutions with a granularity regulated by a
parameter ϵ .

Table 1: Comparison against the state-of-the-art

Paper Static Pareto-optimal Frequency
Scaling

Machine
Learning

Grewe et al. [10] ✓ × × ✓
Steen et al. [7] × ✓ × ×

Abe et al. [1] × × ✓ ×

Guerreiro et al. [11] × × ✓ ✓
Wu et al. [29] × × ✓ ✓
Our work ✓ ✓ ✓ ✓

Here we discuss most important related work and Table 1 shows
the comparison. Grewe et al. [10] usedmachine learning for a purely
static approach which, however, only predicted task partinioning.
Steen et al. [7] presented a micro-architecture independent pro-
filer based on a mechanistic performance model on CPU. However,
they do not take frequency scale into consideration, which, as al-
ready described in Section 1.1, plays a heavy role on energy and
performance behaving.

Abe et al. [1], Guerreiro et al. [11] and Wu et al. [29] proposed
performance and energy models by taking frequency scaling into
consideration. Among them, Abe et al. [1] estimated the models
by using performance counters but did not consider the non-linear
scaling effects of the voltage. Guerreiro et al. [11] made more im-
provement: they not only presented the approach of gathering per-
formance events by micro-benchmarks in detail, but also predicted

how the GPU voltage scales. Wu et al. [29] studied the performance
and energy models of an AMD GPU by using K-means clustering.

Nevertheless, all of these approaches gathered the hardware
performance counters (features) while running a kernel. In con-
trast, our work focuses on features that can be extracted statically,
which can be used to estimate the speedup and normalized energy
consumption models of a new kernel without running it. Further-
more, we figure out the Pareto-optimal solutions of memory-core
frequency configurations of the new kernel. To the best of our
knowledge, our work is the first to predict Pareto-optimal frequency
configurations on GPU using static models.

3 METHODOLOGY
Our approach to model the energy consumption and speedup of a
input kernel is based on machine learning methodology, applied
to a feature representation of the kernel code and of the frequency
domain. This Section describes an overview of the method, followed
by a description of the feature representation, the synthetic training
data, the predictive modeling approach for speedup and energy,
and how those are used to derive the predicted Pareto set.

3.1 Overview
The methodology proposed by our work is based on a typical two-
phase modeling with supervised learning: in a first training phase
the model is built; later, when a new input code is provided, a
prediction phase infers the best configurations. Fig. 2 and Fig. 3
illustrate the workflow of this work,respectively for the training
and prediction phases.
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Figure 2: Training phase.
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Figure 3: Prediction phase.

The goal of the training phase is to build two separate models
for speedup and normalized energy. To do that, a set of OpenCL
micro-benchmarks are provided for training (1). For each code
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in the micro-benchmark, a set of static features is extracted (2)
and stored in a static feature data set. Successively, each micro-
benchmark is executed with various frequency configurations (3).
The obtained energy and performance measurements (4), together
with frequency configurations and the static features, are stored
in the training data set. Once these steps have been accomplished
for all micro-benchmarks, the features are normalized and used
to train the two models for normalized energy (5) and speedup
prediction (6).

In the prediction phase, a new OpenCL code is provided as input
to the framework. First, its static code features are extracted (1). The
static features (2) and the frequency configurations (3) are combined
together to form a set of feature vectors, each corresponding to a
specific frequency setting. For each configuration, the previously
trained models (4)(6) are used to predict its normalized energy
consumptions (5) and speedup (7). Once the predictions for all
memory configurations are available (8), the dominant points are
calculated and returned as predicted Pareto set (9).

3.2 Features
To build an accurate predictive model, we define a set of numeri-
cal code features extracted from OpenCL kernels, which are then
conveniently encoded into a feature vector. The feature representa-
tion used by our work is inspired by Guerreiro et al. [11], where
features are designed to reflect the modular design and structure
of the GPUs architecture, which allow them to easily decompose
the power consumption in multiple architectural components [14].
These ten features represent the number of integer and floating
point operations, memory access on either global or local memory,
and special functions such as trigonometric ones.

Formally, a code is represented by the static feature vector

®k = (kint_add ,kint_mul ,kint_div ,kint_bw ,
kf loat_add ,kf loat_mul ,kf loat_div ,ksf ,
kдl_access ,kloc_access )

where each component represents a specific instruction type, e.g.,
integer bitwise (kint_bw ) or special functions (ksf ) instructions, or
memory access on either global (kдl_access ) and local (kloc_access )
memory.

Frequency configurations are also represented as features: the
couple ®f = (fcore , fmem ), where fcore is the core frequency and
fmem is the memory frequency. The frequency values, which lie in
the intervals [135, 1189] (core) and [405, 3505] (memory), are both
linearly mapped into the interval [0, 1].

The vector ®w = (®k, ®f ) represents the features associated with the
execution of a kernel ®k and frequency setting ®f . Our final goal is to
predict, for an input kernel ®k , a subset of frequency configurations
that is Pareto-optimal.

Instead of encoding the total number of instructions of a given
type, each feature component is normalized over the total num-
ber of instructions. Such a normalization step allow us to have
all features mapped in the same range, so that each feature con-
tributes approximately proportionately to the model; as a result,
codes with the same arithmetic intensity but different number of
total instructions will have the same feature representation.

With respect of related work [10, 16], where features are ex-
tracted from the AST, we instead implemented the feature extrac-
tion with an LLVM pass running on the intermediate representation
of the kernel.

3.3 Synthetic Training Benchmarks
Instead of using as training data the existing test benchmarks, we
used a different and separate set of synthetic training codes specif-
ically designed for the purpose. In related work, synthetic test
benchmarks have been proposed for generic OpenCL code, e.g.,
using deep learning-based code synthesis [5], or in domain-specific
context such as stencil computations [4].

Our approach is a combination of pattern-based and domain-
specific synthetic code generation, and is carefully designed around
the feature representation [11]. Code benchmarks are generated
by pattern: each pattern covers a specific feature, and generates a
number codes with different instruction intensity (as a consequence,
each pattern is designed to stress a particular component of the
GPUs). For instance, the pattern b-int-add includes nine codes
with a variable number of integer addition instructions, from 20 to
28. This training code design enables a good coverage of (the static
part of) the feature space. Additionally, a set of training benchmarks
corresponding to amix of all used features is also taken into account.
Overall, we generated 106 micro-benchmarks.

The training data is represented by each code executed with a
given frequency setting. Each code has been executed with a subset
of 40 carefully sampled frequency settings, leading to a training
size of 4240 samples. It is important to remark that, for a given
micro-benchmark, it takes 20 minutes to test 40 frequency settings,
70 minutes to test all the 174 frequency settings, making therefore
difficult the exhaustive search of all configurations.

3.4 Predictive Modeling
The final goal of this work is to predict which GPUs frequency con-
figurations are best suited for an input OpenCL kernel. A frequency
setting is a combination of a core frequency and memory frequency.
For each setting, we are interested in both execution time (in ms)
and energy consumption (in Joule). In this multi-objective context,
there is no single best configuration, but a set of Pareto-optimal
values, each exposing a different trade-off between energy and
performance. This Section explains how our work is capable of
predicting a Pareto set of frequency settings for an input OpenCL
code.

Our approach is based on three key aspects. First, our predictive
model uses machine learning: it is built during a training phase,
and later reused on a new code for inference. Second, the multi-
objective model is split into two single-objective problems, which
are addressed with two more specific methods. Third, a final step
derives a set of (multi-objective) configurations out of the two
(single-objective) models.

Due to the different behaviors of speedup and normalized en-
ergy, we tested different kinds of regression models including OLS
(ordinary least squares linear regression), LASSO and SVR (support
vector regression) for speedup modeling, and polynomial regres-
sion and SVR for normalized energy modeling. Because of the more
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accurate results, in this section we only report about SVR with
different kernels.

In general, given a training data set ( ®w1,y1), . . . , ( ®wn ,yn ), where
®wi is a feature vector andyi the observed value (e.g., either speedup
or energy), the SVR model is represented by the following function:

f ( ®w) =
n∑
i=1
(αi − α

∗
i )K( ®w, ®wi ) + b (1)

where b refers to the bias, αi and α∗i are Lagrange multipliers
that are obtained by solving the associated dual optimization prob-
lem [25]. K( ®wi , ®w j ) is the kernel function, which will be specified
later in this section.

Speedup Prediction. The first model focuses on the performance
of the code with different frequency settings. To have a more ac-
curate predictive model, we focus on modeling normalized perfor-
mance values, i.e., speedup over a baseline configuration using a
default memory setting, instead of raw performance.

We analyzed a large set of codes, including the twelve test bench-
marks and the 106 micro-kernels used for training. Based on the
analysis insights we sought that, while keeping constant input code
and memory frequency, the speedup increases linearly with the
core frequency (this can bee seen also in the motivational examples
in Section 1.1). For this reason, we used SVR with linear kernel for
speedup prediction.

Formally, given a set of n kernel executions in the training set T ,
we define a training sample of input-output pairs ( ®w1, s1), ··· , ( ®wn , sn ),
where ®wi ∈ T , and each kernel execution of ®wi is associated to its
measured speedup si . Therefore, the kernel function in (2) is defined
as K( ®wi , ®w j ) = ®wi · ®w j . Additionally, the C and ϵ parameters [25]
are set to 1000 and 0.1.

After the training, coefficient αi ,α∗i and b represent the model,
which is later used to predict the speedup of a new kernel execution
®w comprising of a new input code ®k and a frequency setting ®f .

Normalized Energy Model. A second model is used for energy
prediction. As we did for performance, we focus on predicting
per-kernel normalized energy values instead of directly modeling
energy or power.

We observed how normalized energy behaves on a large number
of codes. However, in this case the relation is not linear: while keep-
ing constant both input code and memory frequency, normalized
energy shows a parabolic behavior with increasing core frequency,
and with a minimum (see Section 1.1). After this point, the increase
on core frequency does not compensate the increase on power,
leading to an overall decrease of energy per task. Because of that,
we modeled the normalized energy with a non-linear regression ap-
proach; after testing different ones, we selected radial basis function
(RBF) for kernel.

Formally, given a set of n kernel executions in the training set T ,
we define a training sample of input-output pairs ( ®w1, e1), ··· , ( ®wn , en ),
where ®wi ∈ T , and each input ®wi is associated to its normalized
energy value ei . Therefore, the kernel function in (2) is defined as
K( ®wi , ®w j ) = exp(−γ | | ®wi − ®w j | |

2)with parameters γ = 0.1,C = 1000
and ϵ = 0.1.

After the training, the model is represented by the coefficients
αi ,α

∗
i , and b, which are later used to predict the normalized energy

of a new kernel execution ®w .

Deriving the Pareto Set. The final calculation of the Pareto-optimal
solution is a straightforward application of multi-objective theory.
We briefly recall here the most important concepts.

The general idea of Pareto dominance implies that one point
dominates another point if it is better in one objective and in the
others is not worse. In our bi-objective problem, we have two goals,
speedup and normalized energy, which need to be maximized and
minimized, respectively. Given two kernel executions ®wi and ®w j ,
corresponding to (si , ei ) and (sj , ej ), ®wi dominates ®w j (denoted by
®wi ≺ ®w j ) if we have one of the following cases:
• si ≥ sj and ei < ej , or
• si > sj and ei ≤ ej .

A kernel execution ®w∗ is Pareto-optimal if there is no other kernel
execution ®w ′ such that ®w ′ ≺ ®w∗. A Pareto-optimal set P∗ is the set
of Pareto-optimal kernel execution. A Pareto-optimal front is the
set of points that constitutes the surface of the space dominated by
Pareto-optimal set P∗.

Once we have the two predictions for each point (i.e., kernel
execution) of the space, we can easily derive the Pareto set P ′ by
using the following algorithm:

Algorithm 1 Simple Pareto set calculation

1: Predictions ← {(s1, e1), . . . , (sm , em )}
2: P ′ ← ∅ ▷ Output Pareto set
3: Dominated ← ∅ ▷ Set of dominated points
4: while Predictions , ∅ do
5: candidate ← Predictions .pop()
6: foreach point ∈ Predictions do
7: if candidate ≺ point then
8: Predictions ← Predictions \ {candidate}
9: Dominated ← Dominated ∪ {candidate}

10: if point ≺ candidate then
11: Dominated ← Dominate ∪ {point}
12: else ▷We have found a point in the frontier
13: P ′ ← P ′ ∪ {candidate}

In our case, this simple algorithm is enough to process all the ker-
nel executions associated with a new input kernel. However, faster
algorithms with lower asymptotic complexity are available [18].

4 EXPERIMENTAL EVALUATION
This Section presents and discusses the experimental design and
the results of our study. The test setup is discussed in the next
section (4.1). The evaluation consists of an analysis of energy and
performance characterization (4.2), followed by an error analysis
of our prediction model for speedup (4.3) and energy efficiency
(4.4). It concludes with the evaluation of the predicted set of Pareto
solutions (4.5).

4.1 Frequency Domain and Test Setting
Our work is based on the ability of setting up memory and core
frequencies, and on getting an accurate measurement of the en-
ergy consumption of a task execution. For the experimental eval-
uation of our approach, we relied on the capabilities provided by
the NVML [22] library. It supports a number of functions to check
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which frequencies are supported (nvmlDeviceGetSupportedMemo-
ryClocks()), to set the core and memory frequency (nvmlDevice-
SetApplicationsClocks()), and to get the power consumption
of the GPUs (nvmlDeviceGetPowerUsage()).

It is important to remark that different NVIDIA GPUs may have
very different tunable configurations. For example, the NVIDIA Ti-
tan X provides four tunable memory frequencies while the NVIDIA
Tesla P100 only supports one. In addition, we experimentally no-
ticed that some of the configurationsmarked as supported by NVML
are not available, because the setting function does not actually
change the frequencies.

Fig. 4 shows those frequency configurations on an NVIDIA Titan
X (4a) and a Tesla P100 (4b). The black points represent the actual
available memory-core configurations. On Titan X, while setting
to a core frequency higher than 1202 MHz for mem-l,h,H, the core
frequency is actually set to 1202 MHz. The gray points indicate
those configurations indicated as supported by NVML but that
actually correspond to the core frequency of 1202 MHz.

As our goal is to statically model how core and memory fre-
quency behave with different applications, we disabled any dy-
namic frequency feature (auto-boost): all experiments have been
performed at a manually-defined memory setting. The red cross
represents the default frequency configuration while not using
dynamic scaling.
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Figure 4: Supported combinations of memory and core fre-
quencies.

An important issue of modeling these frequency configurations
is that they are not evenly spread over the frequency domain; in-
stead, different core frequencies are available for each memory
frequency. In particular, the lowest memory configuration (mem-L)
only supports six core frequencies, while mem-l has 71, and both
mem-h and mem-H have 50.

Because of the larger space of possible memory configurations,
our work is more interesting on the Titan X. The methodology
introduced by this work is portable, and all test presented in this
work have been performed on both NVIDIA GTX Titan X. However,

we mainly focus on the most interesting Titan X scenario and all
graphics refer to such architecture unless explicitly mentioned.

The main target architecture is equipped with the Titan X GPUs
based on Maxwell architecture, supporting Compute capability
5.2, with default frequencies of 3505 MHz (memory) and 1001MHz
(core), OpenCL version 1.2 and driver version 352.63. The OS was
Linux CentOS 14.

The per-kernel energy consumption is computed out of the
power measurements, e.g., the average of sampled power values
times the execution time. NVML provides power measurements at
a frequency of 62.5 Hz, which may affect the accuracy of our power
measurements if a benchmark runs for a too short time. There-
fore, the applications have been executed multiple times, to make
sure that the execution time is long enough to reach a statistical
consistent power value.

4.2 Application Characterization Analysis
We analyzed the behavior of twelve test benchmarks in terms of
both speedup and (normalized) energy consumptions.

In Fig. 5, we show a selection of eight significant applications
taken from the twelve test benchmarks. For each code, we show
speedup (x-axis) and normalized energy (y-axis) with different fre-
quency configurations; the reference baseline for both correspond
to the energy and performance value of the default frequency con-
figuration.

Generally, the applications show two main patterns (see top
and bottom codes in Fig. 5), i.e., memory- vs compute-dominated
kernels, which correspond to the different sensitivity to core and
memory frequency changes.

Speedup. In terms of speedup, k-NN shows a high variance with
respect of the core frequency: for mem-H and mem-h, speedup goes
from 0.62 up to 1.12, which means that it can double the perfor-
mance by only changing the core frequency; for the mem-l the
difference is even larger, while the limited data for mem-L suggest a
similar behavior.

At the other extreme, blackscholes shows very little speedup
difference while increasing the core frequency: all configurations
are clustered to the same speedup for mem-L and l, while in mem-h
and H the difference is minimal (from 0.89 to 1). Other applications
behave within those two extreme codes.

Normalized energy. As previously mentioned, normalized en-
ergy often exhibits a parabolic distribution with a minimum. With
respect to core frequency, it varies within smaller intervals. For
the highest memory frequencies, it goes up to 1.4 for the first four
codes, and up to 1.2 for the others. Again, the lowest configuration
present very different behaviors: on k-NN, energy-per-task may be
from twice the baseline, up to 0.8; in blacksholes, on the other
side, mem-L shows the same normalized energy for all the core
frequencies.

High vs low memory frequencies. There is a big difference be-
tween high (mem-H and h) and low (mem-l and L) frequency config-
urations. Mem-H and h behave in a very similar way, with regard of
both speedup and normalized energy. Both mem-l and mem-L have
behavior that is much harder to predict. Mem-l behaves like the
highest memory frequency at a lower normalized energy for the
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(g) Mersenne Twister(MT)
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Figure 5: Speedup and normalized energy for eight selected benchmarks and different frequency configurations. Bottom
(energy)-right (speedup) is better.

first four codes; however, on the other four codes, the configura-
tions collapse to a line. The mem-L is even more erratic: in some
codes, all points collapse to a very small area, practically a point.

This is a problem for modeling: lowest memory configurations
are much harder to model because their behavior is very erratic.
In addition, because the supported configurations are not evenly
distributed, we also have less points to base our analysis.

Pareto optimality. In general, we can see two different patterns
(this also extend to the other test benchmarks). In terms of Pareto
optimality, most of the dominant points are mem-h and H. However,
lowermemory settingsmay aswell contribute to the Pareto-set with
configurations; in k-NN, for instance, mem-l has a configuration that
is as fast the highest ones, but with 20% less energy consumption.

The default configuration is often a very good one. However,
there are other dominant solutions that cannot be selected by using
the default configuration.

4.3 Accuracy of Speedup Predictions
This section evaluates the accuracy of our speedup predictions. The
modeling approach used for this evaluation is the one described in
Section 3.4 based on linear SVR and trained on micro-benchmarks.
The evaluation is performed on the features extracted from the
twelve test benchmarks discussed before. For each application, we
predicted the speedup value for all the sampled frequency config-
urations, and then we calculated the error after actually running
that configuration.

To have an accurate analysis of the accuracy, we grouped the
errors by memory and core frequency. The box-plots in Fig. 6 shows
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Figure 6: Prediction error of speedup

the minimum, median and maximum error (%), and the error distri-
bution of the 25 and 75 percentile.
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The error analysis shows that the error is dependent on the
memory frequency. The error for the highest memory frequencies
is quite low. It is usually within the 5% and goes over the 10% only
for few outliers. The error here is also evenly distributed (over and
under approximations are similar).

On the other hand, the two lowest memory frequencies are very
hard to predict. Results show a mean error that, in some cases, is
higher than 20%. Mem-L is mainly under-approximated, while mem-l
is mainly over-approximated. The error is application-dependent,
the reasons for the larger error are mainly two. First, as shown in
previous analysis, some applications have a very different sample
distribution, clustered at mem-L. Second, because of the limited
number of supported configurations, we have only six samples for
mem-L in the training set. Such a small amount of points is not
enough for predictive modeling.

4.4 Accuracy of Normalized Energy Predictions
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Figure 7: Prediction error of normalized energy

To evaluate the accuracy of the SVR model used for normalized
energy predictions, we used the same methodology discussed in
the previous section. Fig. 7 shows the prediction error by memory
frequency and program.

High memory frequency predictions are accurate. However, the
relatively small error for the two highest-frequency configurations
is not evenly distributed as for speedup, and it is also application
dependent. For instance, the AES code is always over-approximated.

Also this model lacks of accuracy for the two lowest memory
configurations. In this case, mem-l are mainly under-approximated,
while for mem-L the error is application-dependent. As for perfor-
mance, the error analysis indicates that lowest memory configu-
rations have higher error because of their very varying energetic

behavior, and because of the limited number of supported configu-
rations for mem-L.

4.5 Accuracy of Predicted Pareto Set
Once the two models have predicted the speedup and normalized
energy for all frequency configurations, Algorithm 1 is used to
calculate the predicted Pareto set. The accuracy analysis of the
Pareto set is not trivial because our predicted set may include points
that, in actual measured performance, are not dominant each other.
In general, a better Pareto approximation is a set of solutions that,
in terms of speedup and normalized energy, is the closest possible
to the real Pareto-optimal one, which in our case has been evaluated
on a subset of sampled configurations.

Lowest memory configuration. Because of technical limitations
of NVML, the memory configuration mem-L only supports six core
configurations, up to only 405 MHz; therefore it covers only a
limited part of the core-frequency domain. This leads to a lower
accuracy of normalized energy prediction (Fig. 7). In addition, the
Pareto analysis shows that the last point is usually dominant to
the others, and it contributes to the overall set of Pareto points in
11 out of 12 codes, as shown in Fig. 8 (the six mem-L points are in
green, the last point is blue when dominant).

We used a simple heuristics to cover up with this issue: we
used the predictive modeling approach on the other three memory
configurations, and added the last of the mem-L configuration in
the Pareto set. This simple solution is accurate for all but one code:
AES.

Pareto frontier accuracy. Fig. 8 provides an overview of the Pareto
set predicted by our method and the real ones, over a collection
of twelve test benchmarks. The gray points represents the mea-
sured speedup and normalized energy of all the sampled frequency
configurations (mem-H, mem-h, and mem-l), except for mem-L, which
are in green because they are not modeled with our predictive ap-
proach. The default configuration is marked with a black cross. The
blue line represent the real Pareto front P∗, while the red crosses
represent our predicted Pareto set P ′ (we did not connect these
points because they are not necessarily dominant each other).

Table 2: Evaluation of predicted Pareto fronts

Benchmark D(P ∗, P ′) #Points Extreme point distance
|P ′ | |P ∗ | max speedup min energy

PerlinNoise 0.0059 12 10 (0.0, 0.0) (0.009, 0.008)
MD 0.0075 9 11 (0.0, 0.0) (0.0, 0.0)
K-means 0.0155 10 12 (0.0, 0.0) (0.007, 0.003)
MedianFilter 0.0162 11 6 (0.001, 0.094) (0.008, 0.006)
Convolution 0.0197 10 14 (0.0, 0.0) (0.042, 0.038)
Blackscholes 0.0208 9 7 (0.002, 0.097) (0.007, 0.016)
MT 0.0272 10 6 (0.003, 0.018) (0.505, 0.114)
Flte 0.0279 9 11 (0.012, 0.016) (0.0, 0.0)
MatrixMultiply 0.0286 9 10 (0.0, 0.0) (0.073, 0.050)
BitCompression 0.0316 11 6 (0.0, 0.0) (0.020, 0.023)
AES 0.0362 11 14 (0.0, 0.0) (0.214, 0.165)
k-NN 0.0660 9 8 (0.036, 0.183) (0.057, 0.004)

Coverage difference. Table 2 shows different metrics that eval-
uate the accuracy of our predicted Pareto set. A measure that is
frequently used in multi-objective optimization is the hypervolume
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(f) Blackscholes
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(g) Mersenne Twister(MT)
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Figure 8: Accuracy of the predicted Pareto front. Measured solutions are shown for all configurations, while the other data
points are based only on the highest frequency configurations. Bottom (energy)-right (speedup) is better.

(HV) indicator [31], which measures the volume of an approxima-
tion set with respect of a reference point in terms of the dominated
area. In our case, we are interested on the coverage difference be-
tween two sets (e.g., the real Pareto set P∗ and the approximation set
P ′). Therefore, we use the binary hypervolume metric [30], which
is defined by:

D(P∗, P ′) = HV (P∗ + P ′) − HV (P ′) (2)

Because we maximize on speedup and minimize on normalized
energy consumption, we select (0.0, 2.0) as the reference point. In
addition, we also indicate the cardinality of both predicted and
optimal Pareto set.

The twelve test benchmarks in Fig. 8 are sorted by coverage dif-
ference. Perlin Noise is the code with the nearest distance to the
optimal Pareto set: the 12 predicted points are very close to the 10
optimal ones, and the overall coverage distance is minimal (0.0059).
Overall, the Pareto predictions for the first six codes are very accu-
rate (≤ 0.0208). Five more codes have some visible mispredictions
which, however, translate to a not so large error (≤ 0.0362). k-NN is

the worst code because of lowest accuracy of speedup prediction,
which shows in Fig. 6.

Accuracy on extrema. We additionally evaluated the accuracy of
our predictive approach on finding the extreme configurations, e.g.,
the two dominant points that have, respectively, minimum energy
consumption and maximum speedup. Again, we removed from this
analysis the mem-L configurations, whose accuracy was discussed
above. The rational behind this evaluation is that the accuracy on
the Pareto predictionsmay not reflect the accuracy on these extreme
points. As shown in Table 2, the point with maximum speedup is
predicted exactly in 7 out of 12 cases, and the error is small. In case
of the point with minimum energy, we have larger mispredictions in
general; in particular two codes, AES and MT, have a very large error.
This reflect the single-objective accuracy observed before, where
the accuracy of speedup is generally higher than the accuracy of
energy.

The high error on all our analysis with the MT code is mainly due
to the fact that lower memory configurations collapses to a point
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(mem-L) and a line (mem-l), a behavior that is not showed by other
codes.

Predictive modeling in a multi-objective optimization scenario
is challenging because few mispredicted points may impact the
whole prediction, as they may dominate other solutions with a
good approximation. Moreover, errors are not all equals: overesti-
mation on speedup, as well as underestimation on energy, are much
worse than the opposite, as they may introduce wrong dominant
solutions. Despite that, our predictive approach is able to deliver
good approximations in ten out of twelve test benchmarks.

5 CONCLUSION
This paper introduces a modeling approach aimed at predicting the
best memory and core frequency settings for an OpenCL application
onGPUs. The proposed framework is based on a two-phasemachine
learning approach: first, the model is built during a training phase
performed on a set of synthetic benchmarks; later, the model is used
for predicting the best frequency settings of a new input kernel.

The modeling approach is designed to address both energy and
performance in a multi-objective context. Different models are build
to predict the normalized energy and the speedup. Successively,
these models are used together to derive a set of Pareto-optimal
solutions. Results on an NVIDIA Titan X show that it is possible
to accurately predict a set of good memory configurations that are
better than the default predefined one.

In the future, we believe that novel modeling approaches are
required, given the raising interest in multi-objective problems
involving energy efficiency, approximate computing, and space
optimization.
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