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ABSTRACT
Today, the SYCL standard represents the most advanced program-
ming model for heterogeneous computing, delivering both produc-
tivity, portability, and performance in pure C++17. SYCL 2020, in
particular, represents a major enhancement that pushes the bound-
aries of heterogeneous programming by introducing a number of
new features. As the new features are implemented by existing
compilers, it becomes critical to assess the maturity of the imple-
mentation through accurate and specific benchmarking. This paper
presents SYCL-Bench 2020, an extended benchmark suite specifi-
cally designed to evaluate six key features of SYCL 2020: unified
shared memory, reduction kernel, specialization constants, group al-
gorithms, in-order queue, and atomics. We experimentally evaluate
SYCL-Bench 2020 on GPUs from the three major vendors, i.e., AMD,
Intel, and NVIDIA, and on two different SYCL implementations
AdaptiveCPP and oneAPI DPC++.

CCS CONCEPTS
• Computer systems organization → Heterogeneous (hybrid)
systems; • General and reference → Performance; • Software
and its engineering→Parallel programming languages;Com-
pilers.
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1 INTRODUCTION
Current developments in computer architecture predict that almost
all aspects of future computer systems will have many more dif-
ferent components than in the past, leading to an era of extreme
heterogeneity [36]. In particular, the heterogeneity of processors
has led not only to the near widespread adoption of GPUs, but also
to a proliferation of custom accelerators for various domains, such
as artificial intelligence [26], molecular dynamics [33], and cosmol-
ogy [29]. This ongoing trend spans all computing systems, from
tiny embedded systems to large-scale high-performance computing.
In fact, nine out of ten of the world’s most powerful supercomputers
have a heterogeneous node equipped with GPUs [3]. Unfortunately,
extreme heterogeneity comes with extreme software fragmentation,
emphasizing the necessity of open standards for heterogeneous
computing.

The SYCL standard [2] fills this gap by providing a high-level C++
abstraction layer for writing heterogeneous, performance-portable
applications. SYCL 2020, the latest major revision of the standard,
opened the doors to backends other than OpenCL and introduced
several new features that greatly enhance SYCL’s functionality
and extend its applicability to a wide range of hardware. SYCL
2020’s new features, such as unified shared memory and group
algorithms, provide powerful tools for achieving high performance
in a portable way, but implementation efforts are now focused on an
even larger number of targets, considering all possible combinations
of compilers and backends. To achieve a stable software ecosystem,
it is essential that SYCL 2020 implementations are mature enough
so that all features perform well on all supported targets.

This paper proposes a set of extensions to SYCL-Bench1 [25]
specifically designed to evaluate the main features of SYCL 2020.
To the best of our knowledge, this is the first benchmark suite
specifically tailored for SYCL 2020. The contributions of this paper
are:

• The first benchmark suite specifically designed for SYCL
2020, which extends SYCL-Bench with 9 templated bench-
marks covering 44 configurations and six patterns.

• Benchmark analysis of six major SYCL 2020 features: unified
shared memory, reduction kernel, specialization constant,
group algorithms, in-order queue, and atomic;

• Experimental evaluation on NVIDIA, Intel, and AMD GPUs,
as well as two different SYCL implementations AdaptiveCpp
and oneAPI DPC++.

1SYCL-Bench is publicly available on GitHub: https://github.com/unisa-hpc/sycl-bench
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The rest of the paper is organized as follows: Section 2 gives
background on the evolution of SYCL 1.2.1 to SYCL 2020 and cur-
rent SYCL implementations. Section 3 describes the principal SYCL
2020 features and the related benchmark methodology. Section 4
presents the benchmark results on three GPUs, while Section 5
highlights some discussion points arising from the experimental
sections. Section 6 and 7 conclude the paper with related work and
conclusions.

2 BACKGROUND
2.1 From SYCL 1.2.1 to SYCL 2020
SYCL was first proposed in March 2014 by the Khronos Group as
a high-level programming model for OpenCL. SYCL shared much
of its definitions with OpenCL, inheriting the execution model,
runtime feature set, and device capabilities of the underlying model,
while providing C++ usability and flexibility alongside an easier,
single-source programming style. A novel working group, the SYCL
Working Group, was created within the OpenCL Working Group
as a sub-project. However, developers found that the bond with
OpenCL was too strict, as the SYCL specification was shown to
be well-suited for third-party custom backends [6]. SYCL 2020
was ratified in February 2021 and constitutes a major milestone
for the SYCL ecosystem. With the novel specification, the binding
with OpenCL drops, allowing for novel third-party acceleration
API backends, e.g. CUDA, ROCm, LevelZero, etc. As a result, the
SYCL working group was split from the OpenCL one, becoming a
standalone entity in the Khronos group. Moreover, the SYCL 2020
release incorporates over 40 new features to enhance flexibility,
performance, and productivity. Those additions encompass:

• Unified Shared Memory (USM), a low-level, pointer-based
memory API

• Built-in parallel reduction support
• Support for native API interoperability
• Work group and subgroup common algorithm library
• SYCL atomic alignment to the C++ standard
• Runtime queries for fine-grained device selection

2.2 SYCL 2020 Current Implementations
At the time of writing, SYCL comprises two major implementations:
OneAPI DPC++ and AdaptiveCpp.

OneAPI Data-Parallel C++ [8] is an LLVM-based, open-source
implementation developed by Intel. It includes an OpenCL backend
to target e.g. the host CPU, as well as CUDA, HIP, and Level Zero
backends for NVIDIA, AMD, and Intel GPUs respectively. Further-
more, the OpenCL backend can also target FPGAs, with DPC++
including an emulator to facilitate development.

AdaptiveCpp is an open-source heterogeneous compiler and
runtime implementation project for SYCL and C++ standard paral-
lelism offload led by Heidelberg University[6]. It can run on CPUs
with OpenMP or OpenCL and can target supported OpenCL de-
vices, as well as NVIDIA, AMD, and Intel GPUs with native back-
ends. In addition, it includes a novel single-source, single compiler
pass (SSCP)[7] which executes a single compiler invocation during
compilation instead of the usual separate host-device passes, sub-
stantially lowering compilation times. In the AdaptiveCpp SSCP

Implementation Backends Target Hardware

OneAPI DPC++

CUDA NVIDIA GPUs
HIP AMD GPUs
OpenCL OpenCL devices
LevelZero Intel GPUs

AdaptiveCpp

OpenMP Any CPU
CUDA (via nvc++, clang CUDA or SSCP JIT) NVIDIA GPUs
HIP (via clang HIP or SSCP JIT) AMD GPUs
OpenCL (via SSCP JIT) OpenCL devices
LevelZero (via SSCP JIT) Intel GPUs

Table 1: Summary of the major SYCL implementations with
the relative backends and supported hardware

compiler, code is JIT-compiled at runtime from a unified code rep-
resentation based on LLVM IR.
While both implementations are not officially SYCL 2020 compli-
ant, they implement the majority of the core features. Alongside
them, there are other minor implementations in the SYCL ecosys-
tem: NeoSYCL [23] is an implementation designed for the NEC
SX-Aurora TSUBASA supercomputer. TriSYCL [16], developed by
AMD, has been one of the first available SYCL implementations and,
while it exposes both an OpenCL and TBB backend, it’s mostly used
for experimenting on Xilinx FPGAs. Sylkan [34] is an experimental
implementation targeting Vulkan APIs, which can potentially target
any GPUs supporting the Khronos standard. Alongside SYCL imple-
mentations, multiple projects aim to bring SYCL to domain-specific
application fields, such as distributed computing [32], real-time
energy optimizations [15], and approximate computing [11].

3 SYCL 2020 BENCHMARKED FEATURES
In this section, we describe the principal SYCL 2020 features and
the relative designed benchmarks.

3.1 Unified Shared Memory
Unified Shared Memory (USM) is a pointer-based, low-level mem-
ory API for handling memory allocations in a SYCL environment.
When using USM, the devices and the host share the same address
space, guaranteeing that pointers will be consistent across different
memory spaces. Unified Shared Memory also allows the allocation
of memory accessible from both host and devices, transparently mi-
grating data between memories without requiring explicit memory
operations.
USM provides three kinds of allocations:

• malloc_host: allocates pinned memory on the host. Pinned
memory, or page-locked memory, is stored in the DRAM and
cannot generate a page fault on access. It’s also accessible on
the device, but it cannot be migrated to the device memory
and instead is queried from host memory at each access.

• malloc_device: allocates memory on the dedicated device
memory. Such allocation is not accessible from the host or
any other devices and requires explicit copy operations to
be migrated2.

• malloc_shared: allocated memory on shared memory, i.e. the
memory is accessible from both host and device. It is usually

2Optionally available within the same SYCL context if the backend has P2P support
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implemented with a page fault-based system to transparently
migrate memory from the host and devices, enabling fine-
grained memory transfers.

Compared to the buffer-accessor model, USM allows to have more
fine-grained control over memory allocations. Furthermore, USM
pointers do not carry the Accessors abstraction overhead, poten-
tially requiring less space on devices, e.g., registers on GPUs. On
the other hand, the malloc/free paradigm employed by USM is more
bug-prone, e.g. memory leaks by missing frees. Furthermore, USM
does not implicitly create a kernel task graph as done by the buffer-
accessors, and thus the user must explicitly declare dependencies
between tasks, shifting the task scheduling optimization duty to
the end user. For Unified Shared Memory, we include three new
specialized benchmarks:

(1) Task scheduling latency: With USM, SYCL 2020 users have
two ways to handle data allocations. While with buffer-accessors
the SYCL runtime needs to check for data dependencies and task
scheduling optimizations, with USM no such thing occurs, and the
task graph must be manually created. Thus, the scheduling time
of the two memory models could be significantly different. In this
benchmark, we want to measure the task scheduling overhead of
the two SYCL memory models. We launch a series of small kernels
in a for loop, with linear dependencies using both buffer-accessors
and USM. For the latter, we employ device allocations to minimize
run-time overhead during kernel execution. We take the system
time, i.e., the time spent by the SYCL runtime to prepare the kernel
execution. In this way, we expect to effectively measure the SYCL
runtime scheduling overhead.

(2) Host-Device transfers: USM provides three different kinds of
allocation, each of which exposes different behaviors when accessed
on the host and/or the device. However, it’s unclear when a certain
allocation is more suitable for a specific use case. For example, host
allocations do not require to be manually migrated to the device,
but each access is more expensive as it generates a slow host-device
memory transfer. Shared allocations migrate on-demand between
devices but require specialized hardware support. Therefore, choos-
ing the right allocation is essential. To explore the performance of
USM allocations, SYCL-Bench 2020 includes a novel Host-Device
transfers benchmark. The purpose of the benchmark is to simulate
different offloading scenarios and measure which USM allocation
is more suited. It is organized as follows: for each allocation kind,
we first issue a host-device copy operation if data are not device-
accessible. Then we submit a vector addition kernel on the device,
followed by a device-host copy (if the current allocation is not host
accessible). Finally, we perform a host kernel on the resulting data.
This process is included in a loop, whose iteration number can be
tweaked from the command line. This way, we simulate a common
offloading scenario where data are moved back and forth from host
to device. The amount of memory access executed by the device
and host kernels is controlled by an instruction mix parameter: it
controls the proportion between host and device memory access,
e.g. an instruction mix of 10 means that the device kernel performs
10x memory access compared to the host kernel. In this way, by

varying the amount of work performed on the device we can mea-
sure the performance of automatic memory migration and host
access overhead.

(3) Pinned vs Non-Pinned allocation: Pinned memory allocation
can greatly improve bandwidth on some devices. For instance,
NVIDIA GPUs cannot write pageable memory on the host when
performing a device-host copy operation. Instead, they allocate
a temporary, page-locked memory buffer and copy the data to it
before moving the data to the original destination [1]. However, allo-
cating pinned memory is an expensive operation, which can inhibit
the bandwidth advantage. In this benchmark, we measure the over-
head of using pinned memory in SYCL kernels. We allocate both
pinned and non-pinned memory, and then submit n Host-Device
and Device-Host copy operations. In this way, we measure how
many copies (e.g. buffer reuse) are necessary to justify the initial
allocation overhead on GPUs from different hardware vendors.

3.2 In-order queue
SYCL 2020 introduced a novel in-order attribute for the sycl::queue
object: when a queue is defined as in-order, all commands submit-
ted to the queue are executed in a FIFO order, meaning that each
task has an implicit dependency on the previously submitted tasks.
While it could appear as a minor inclusion in the SYCL standard,
in order queues come with a non-negligible series of advantages.
Because tasks are executed in the submission order, a SYCL imple-
mentation could optimize the SYCL task graph creation or even
avoid building it, potentially reducing task scheduling latency. For
example, when using buffer-accessors the SYCL runtime can avoid
checking for read-write dependencies with previously submitted
kernels. This could be crucial in latency-bound applications, where
the SYCL runtime overhead could be detrimental. On the other
hand, the SYCL runtime cannot exploit parallelism opportunities
by overlapping kernel executions.
For this feature, we extended the Task scheduling latency benchmark
by adding a variant with in-order and out-of-order queues. To allow
for a fair comparison, we manually build the task graph using the
depends_on member function of the SYCL handler with USM and
out-of-order queues. By comparing the kernel submission latency
we can evaluate if a SYCL implementation takes advantage of the
optimization opportunities, e.g., optimizing away graph generation.

3.3 Reduction Kernel
Reductions are a common pattern widely adopted in parallel appli-
cations to combine elements into a single output. This aggregation
is achieved through the application of a specified associative and
commutative operation. Relying on optimized implementation of
the reduction pattern is crucial for enhancing overall application
performance. SYCL 2020 introduced the support for built-in reduc-
tion operations that allow writing reduction kernels by leveraging
the novel sycl::reducer class and the sycl::reduction function. The
sycl::reducer is an implementation-defined object, encapsulating a
reduction variable that exposes an interface that defines the opera-
tions allowed on that variable. Although the precise definition of
the reducer class depends on the SYCL implementation, the func-
tions and operators facilitating the modification of the reduction
variable are well-defined by the SYCL standard and assured to be
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supported by every SYCL implementation. The reducer exposes a
combine() function which joins the element of a single work item
with the value of the reduction variable using a pre-defined op-
erator, e.g., addition, multiplication. etc. The SYCL built-in kernel
reduction comes with several advantages in performance, porta-
bility, code readability, and maintenance. Manually implementing
kernel reductions on each target architecture can be difficult and
time-consuming since it necessitates a thorough understanding of
each target architecture together with a delicate tuning phase. In
this way, SYCL hides low-level implementation details, allowing
the user to focus on the core application. Furthermore, SYCL 2020
reduction kernels usually require fewer lines of code compared
to manual implementations, reducing codebase sizes and improv-
ing readability. We included a novel benchmark in SYCL-Bench
2020 for SYCL kernel reductions. The primary objective is to as-
sess the performance enhancements brought about by this new
feature compared with manually optimized reductions [17]. We
employ sycl::range parallel_for instead of sycl::nd_range
parallel_for for writing the kernel reduction: as it enforces less
strict requirements on thread scheduling, SYCL implementations
are free to apply additional optimizations compared to nd_range
ones. In this way, we plan to better evaluate the kernel reduction im-
plementation quality. Additionally, to explore possible optimization
the benchmark is parameterized by a coarsening factor, determining
the number of elements combined by each thread.

3.4 Group Algorithms
SYCL 2020 introduced group algorithms a set of functions that pro-
vide support for operations involving groups of work items, such as
group barriers, and collective operations (shift, permute, reduction,
etc...). All group algorithm functions take a group as the first argu-
ment that defines which group of work items executes the specified
function (sub-group or work group). Group algorithm functions
abstract away low-level hardware details by encapsulating complex
operations into a single, well-defined function optimized for the
target architecture. In contrast, a manually implemented function
may not be as well tuned to the underlying hardware, potentially
resulting in suboptimal performance. Group algorithm functions
are designed to be device-agnostic, allowing them to adapt to differ-
ent devices. Furthermore, group algorithm functions are often more
concise and readable than manually implemented alternatives. To
evaluate the performance achieved by the group algorithms func-
tion we used the sycl::reduce_over_group collective function as a
case study. The reason behind this choice is straightforward: as
reduction performance strongly depends on the target device, they
represent a perfect study case to evaluate SYCL implementation
quality. The sycl::reduce_over_group takes three parameters: the
group of work items involved in the operation, the variable that
has to be combined with the other values passed by the work items
in the group, and the operator. In this benchmark, we performed a
partial reduction over the elements specified by each work item in
the same group through the sycl::reduce_over_group. Then the re-
sult produced by each work group is combined into a single output
value using a tree reduction.

3.5 Specialization Constants
Specialization constants are a new feature introduced in SYCL 2020
which is intended to allow implementations to optimize kernels
for a specific set of input values. Crucially, these values need to be
known ahead of the actual kernel execution and remain constant
throughout it, but they need not be known at static compilation
time, i.e. when the host application itself is compiled.

This feature potentially enables significant speedups in case the
constant, or propagation of it, enables the compiler to eliminate or
simplify a non-negligible amount of kernel code. However, it also
requires a large amount of implementation work – and, even in
high-quality implementations, may induce additional overhead for
the initial kernel launch after a specialization constant was changed.
As such, the efficacy of this feature may vary significantly across
different implementations and hardware backends, which makes it
a very interesting target for analysis in a benchmark suite targeted
at SYCL 2020.

To conclusively evaluate this feature in a sufficiently realistic use
case, SYCL-Bench 2020 includes a dedicated SpecConst benchmark.
It is based on an implementation of a generic 2D 9-point stencil
code which allows the user to set the stencil values as specializa-
tion constants. In the benchmark, this generic implementation is
then used to implement a 5-point stencil, with the outer corners
set to 0. To provide context for interpreting the results achieved
using specialization constants, the benchmark also features two
alternative implementations, expanded via templates at compile
time: one which uses standard dynamic variables for the stencil
weights, and one which sets them fully statically at (host) compile
time. Finally, to be able to flexibly adjust the relative arithmetic and
memory intensity of the benchmark, the number of inner iterations
of the kernel code can be adjusted, potentially performing more
operations on the same amount of global data.

3.6 Atomics
SYCL 2020 deprecates the sycl::atomic class in favor of the
sycl::atomic_ref to be aligned with the C++ atomic model. The SYCL
atomic_ref class adds three template parameters to the standard
C++ atomic_ref: sycl::memory_order, specifying the memory syn-
chronization order of the atomic operation; sycl::memory_scope,
defining the work items and devices to which the memory ordering
constraints of the atomic operation are applied; and
sycl::access::address_space, indicating the address space of the object
referenced by the atomic_ref class.

Since the previous release of SYCL-Bench does not include a
use case for atomic operations, we developed a new benchmark
to evaluate the performance of atomic operations for the differ-
ent SYCL implementations and hardware. The main purpose of
the benchmark is to investigate how different SYCL implementa-
tions map atomic operations for each target architecture, as well as
atomic hardware support on different vendors’ GPUs. The bench-
mark implements a sum reduction using only the atomic_ref class
and the atomic_fetch_add functions. For all the benchmarks we
used sycl::memory_order::relaxed as it is the only one that SYCL
specification guarantees to be supported on all devices [2]. As
sycl::address_space and sycl::memory_scope we consider the gen-
eral case where the object referenced by the atomic_ref is in the
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sycl::global_space and the ordering constraint applies only to work-
items executing on the same device as the calling work item
(sycl::memory_scope::device). The benchmark is templated on the
datatype on which the atomic operation is performed.

4 EXPERIMENTAL EVALUATION
We present the results obtained on three GPUs from three principal
GPU vendors, i.e. NVIDIA Tesla V100S, AMD MI100, and Intel Max
1100.

The NVIDIA node is equipped with an Intel Xeon Gold 5218
CPU, operating at 2.30GHz and featuring 64 cores. Additionally, it
incorporates an NVIDIA Tesla V100S connected via PCI Express.
The GPU comprises 80 Streaming Multiprocessors, totaling 5120
cores running at a frequency of 1.245GHz, supplemented by 620
Tensor Cores. The Tesla V100S achieves 8.2 TFLOP/s FP64, 16.4
TFLOP/s with FP32, 32.2 TFLOP/s with FP16, and 130 TFLOP/s
utilizing FP16 Tensor cores. The GPU has 32GB HBM2 memory,
attaining a high bandwidth of up to 1132 GB/s. It includes 128KB
L1 Cache per Streaming Multiprocessor (SM), 6MB L2 Cache, and
256KB registers per SM.

The AMD node is configured with an AMD EPYC 7313 CPU
clocked at 3.7GHz, featuring 16 x 2 cores. Additionally, it incorpo-
rates an AMD MI100 GPU connected via PCI Express. The GPU
is comprised of 120 compute units, for a total of 7680 cores, each
running at a frequency of 1.0 GHz. The MI100 GPU delivers up
to 11.5 TFLOP/s FP64, 23.1 TFLOP/s FP32, and an 184.6 TFLOP/s
using FP16. With 32 GB of HBM2 memory, the GPU achieves a
high bandwidth of up to 1129 GB/s. Further specifications include
a 16KB L1 Cache per Compute Unit, an 8MB L2 Cache, and 256KB
registers.

The Intel node was provided by the CINECA consortium [4], it
is equipped with an Intel(R) Xeon(R) Platinum 8480+ and an Intel
Max 1100, connected via PCI Express. It has 56 Xe cores, for a total
of 7168 cores. The max clock is 1550 MHz, achieving 22.3 TFLOP/s
with FP32 and FP64 3 It is equipped with 48 GB of HBM2E memory,
with a maximum bandwidth of 1228.8 GB/s, alongside 28MB L1
cache and 108 MB L2 cache.
For the SYCL implementations, we chose Intel DPC++ (git commit
sha f43cd7b) and AdaptiveCpp (git commit sha eeebfd4) which
are the two main SYCL implementations at the time of writing. .
Additional software stack is Clang 17.0.1 (for building AdaptiveCpp),
CUDA 12.1 (driver 535.129.03), ROCm 5.5.0 (driver 505.302.01), and
LevelZero driver version 170.007.42. We run each experiment 10
times and take the median as the reference value.

4.1 Unified Shared Memory
4.1.1 Task scheduling latency. In Figure 1 we show the benchmark
results when running 50000 kernels on every hardware and SYCL
implementation. From the picture, it’s clear that the DPC++ AMD
backend suffers from high scheduling overhead compared to any
other hardware and implementations, with a 7x slowdown com-
pared to the same benchmark running with AdaptiveCpp and 14x
slowdown compared to the one running on the Tesla V100S with the
same implementation. To allow for a better evaluation of the results,
we also include in Figure 2 the results without the results of the
3Unofficial data as Intel has not released official performance statistics yet.

Figure 1: Task scheduling latency with 50000 kernels sched-
uled

Figure 2: Task scheduling latency with 50000 kernels sched-
uled (no AMD HIP DPC++ on AMD MI100)

HIP AMD DPC++ backend. With DPC++, scheduling kernels with
USM is faster than accessors on every hardware, achieving 1.64x,
2.2x, and 1.07x respectively on NVIDIA, Intel, and AMD GPUs. In
particular, the Intel Max shows remarkably short scheduling time,
with the accessor benchmark being 2.5x times faster than the cor-
responding one on the Tesla V100S.
AdaptiveCpp exposes two main tuning parameters that influence
the runtime scheduling behavior: the
HIPSYCL_ALLOW_INSTANT_SUBMISSION macro and the
ACPP_RT_MAX_CACHED_NODES environment variable. The former al-
lows the submission of USM operations to in-order queues via a
low-latency instant submission mechanism, while the latter deter-
mines the maximum number of nodes the runtime is allowed to
cache to perform a batched submission. If it is set to 0, the run-
time is forced into an eager submission mode. We experimented
with all combinations of those macros: for NVIDIA and Intel hard-
ware, setting the HIPSYCL_ALLOW_INSTANT_SUBMISSION gives a 8%
speedup on USM. On the other hand, on AMD the best setup is
without any optimization macros. The USM benchmark performs
better than accessors on both NVIDIA and Intel GPUs, achiev-
ing 1.4x and 3.1x speedup respectively. However, AMD shows a
consistent slowdown compared to the other backends also with
AdaptiveCpp. We investigated the reason for this slowdown by
looking at the SYCL implementations source code. Both implemen-
tations use hip streams to build SYCL queues on AMD, allocating
multiple streams to exploit parallelism. This performance gap is
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Figure 3: Host-Device transfers benchmark results

likely to derive from a ROCm internal issue when handling multi-
ple streams concurrently instead of scheduling all operations on a
single one, which has been shown to increase submission latency
in some environments4. We believe this issue is connected to the
DPC++ AMD backend, and we plan to further investigate the origin
of the problem.

4.1.2 Host-Device transfers. Figure 3 illustrates the results for Host-
Device transfers benchmark. On the left, Figure 3a shows the results
with a 2GB data size and one iteration. On the right, Figure 3b
shows the results with a 1GB data size and 100 loop iterations. For
the shared allocation, we also include the results when using the
SYCL prefetch function for the V100S and Max 1100, which hints to
the runtime that the data are going to be accessed on the device,
potentially migrating the data before executing the kernel. On AMD
GPUs, on-demand host-device page migration requires XNACK,
an AMD feature disabled by default. Without XNACK enabled,
shared allocations behave like host ones, with data being allocated
on the host. However, XNACK is known to be experimental and
unstable. We experienced random kernel failure as well as GPU
hanging when enabled, therefore we disabled it for this analysis.
However, shared + prefetch allocations can be used even without
XNACK, as no page faults are issued, therefore we include just that
one in our benchmark. From the figures, it is clear that the results
are more hardware-dependent than implementation-dependent, as
both AdaptiveCpp and DPC++ perform similarly. As expected, the
host allocation time scales linearly with the amount of device mem-
ory access, while the other allocations are less influenced. However,
there are two interesting cases: (1) on low instruction mix, the
Tesla V100S and Intel Max 1100 host allocations perform better
than both device and shared. On the Tesla V100S, device and shared
need an instruction_mix > 1.5 and > 4.5 respectively to outperform
the host performance. On the other hand, on Intel Max 1100 the
advantage quickly disappears above a 1:1 device-host memory ac-
cess proportion. (2) On the MI100, host allocation always performs
worse than device, while achieving a great speedup compared to
shared allocations for instruction_mix <=6. However, increasing
the instruction mix would inevitably lead the host line to cross the
shared one. Shared allocations perform worse than device on ev-
ery hardware, while being particularly slower on the AMD MI100,
getting up to 450% slowdown on the benchmark (b) due to the
poor AMD managed memory system support. In Figure 4 we show
the impact of the prefetch operation on shared allocations. On the

4https://github.com/AdaptiveCpp/AdaptiveCpp/issues/1246
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Figure 4: Prefetched speedup in respect to non-prefetched
shared allocation on the Instruction mix benchmark (Figure
3b)

Tesla V100S prefetching memory gives up to 31% improvement
with DPC++ and AdaptiveCpp. On the other hand, prefetching on
Intel hardware seems to give no advantage at all with both imple-
mentations, showing that the Intel driver can efficiently migrate
the shared memory without hints. While in benchmark (a) both
implementations perform similarly when increasing the iterations
in benchmark (b) AdaptiveCpp performs worse on shared and host
compared to DPC++ on Intel hardware, which is unexpected as
both implementations map shared allocation onto native function
call. In particular, DPC++ is on average 23% faster on shared and
shared + prefetch allocations on the Intel Max 1100, while being on
par with the MI100 and V100S.

4.1.3 Pinned vs Non-Pinned allocation. In Figure 5 we show the
results for the Pinned vs non-Pinned benchmark. Malloc refers
to the pageable memory, while malloc host to the pinned one.
We use a data size of 2GB and we measure the execution time by
varying the number of copies performed using the same allocation.
Both implementations performed similarly, showing how results
are more hardware-dependant than implementation-dependant. On
the Tesla V100S, the pinned memory allocation overhead is more
evident with Host-Device copies, where using pageable memory
allocations is faster for < 3 copies, with a maximum speedup of 1.4x
with 1 issued copy operation. This means that at least 3 buffer reuses
are required to match the initial overhead. Conversely, Device-
Host copies are always faster on pinned memory. This is probably
due to the CUDA driver, which is unable to write on pageable



SYCL-Bench 2020 IWOCL ’24, April 8–11, 2024, Chicago, IL, USA

1 2 3 4 5 6 7
Number of copies

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Ti
m

e 
(s

)

Intel DPC++

1 2 3 4 5 6 7
Number of copies

AdaptiveCpp

Direction HostDevice DeviceHost

Allocation Malloc Malloc Host

(a) NVIDIA Tesla V100S

1 2 3 4 5 6 7
Number of copies

0.4

0.6

0.8

1.0

1.2

Ti
m

e 
(s

)

Intel DPC++

1 2 3 4 5 6 7
Number of copies

AdaptiveCpp

(b) AMD MI100

1 2 3 4 5 6 7
Number of copies

0.2

0.4

0.6

0.8

1.0

Ti
m

e 
(s

)

Intel DPC++

1 2 3 4 5 6 7
Number of copies

AdaptiveCpp

(c) Intel Max 1100

Figure 5: Pinned vs Non-Pinned benchmark with 2GB mem-
ory transfers

memory, and thus performs a two-phase copy, allocating a page-
locked memory location as a temporary buffer. On the AMDMI100,
pageable memory performs better on both Host-Device and Device-
Host copy operations. DPC++ requires at least 3 copies to match
the overhead, while AdaptiveCpp requires 4 copies. However, the
speedup is less evident, with a maximum speedup of 1.1x on both
implementations. On the other hand, on the Intel Max 1100, we
observe a completely different behavior, with pinned allocation
performing always better than pageable memory. This shows that,
while sycl::malloc_host is an essential addition to the SYCL
standard, the user should be aware of the connected overhead and
should take care in choosing the right allocation depending on the
user application scenario.

4.2 In-order Queue
Figure 6 shows the results for the task scheduling latency bench-
mark. We issued 50000 kernel launches using in-order and out-
of-order queues. As we did for the original benchmark, we in-
clude in Figure 7 the results without the ROCm DPC++ backend.

Figure 6: Task scheduling latency when launching 50000
kernels with in-order and out-of-order queues

Figure 7: Task scheduling latency when launching 50000
kernels with in-order and out-of-order queues (no ROCm
DPC++)

With DPC++, we see a considerable speedup with the ROCm back-
end, achieving a 4x and 4.4x speedup respectively with accessors
and USM. However, scheduling times are still considerably higher
than every other benchmark which suggests there could be a bug
in the kernel submission logic within the DPC++ compiler on
AMD. Surprisingly, on the other platforms in-order queues pro-
vide the best speedups when targeting USM rather than accessors.
Moreover, the latter shows comparable results both on the Intel
Max and the NVIDIA Tesla, highlighting that probably the SYCL
task graph is still created under the hood. For AdaptiveCpp, the
HIPSYCL_ALLOW_INSTANT_SUBMISSIONmacro, while having no im-
pact on the Accessor benchmarks, showed an even greater impact
on performance for USMwhen targeting in-order queues, achieving
28% speedup on the Tesla V100, 21% on the AMD MI100, and 13%
on the Intel Max 1100. For the accessors, the only benchmark where
in-order queues seem to have an effect is on the AMDMI100, where
it gets a 63% speedup compared to out-of-order queues. This is prob-
ably due to the multiple hip stream issue mentioned in section 4.1.1,
as in order queues are mapped onto a single stream instead. There-
fore, the ROCm latency issue is not present. On the other hand, the
minimal speedup on the other platforms reveals that currently little
is done by the SYCL implementation to exploit the optimization
opportunities led by the in order queues. For USM, AdaptiveCpp
gets a considerable speedup of 65% and 107% on NVIDIA and AMD
platforms respectively, while on the Intel Max 1100, the impact is
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negligible. Overall, in-order queues consistently provide a speedup
compared to out-of-order queue when using Unified Shared Mem-
ory, showing that manually building the task graph can be an
expensive operation for the SYCL runtime. On the other hand, the
impact of in-order queues on accessors is negligible, showing that
implementations do not exploit all the possible optimizations yet.

4.3 Reduction Kernel
Figure 8 shows the results for the reduction kernel benchmark com-
pared with the local memory reduction benchmark on four data
types (int32, int64, fp32, fp64) and 150,000,000 elements. The Adap-
tiveCpp results for the Intel Max 1100 are excluded as the feature
is not currently supported.

In evaluating the kernel reduction benchmark with a coarsening
factor 1, the Intel DPC++ implementation demonstrates approxi-
mately a 2x speedup compared to the AdaptiveCpp implementation
across all hardware platforms. The speedup of DPC++ over Adap-
tiveCpp resides in thread coarsening. AdaptiveCpp implements
the kernel reduction with a tree reduction approach, launching
multiple kernels until a single element is produced. Furthermore,
thread coarsening optimization is left to the user since selecting
the optimal coarsening factor requires parameter-tuning strategies.
Differently, the DPC++ kernel reduction leverages fast atomic and
the reduce_over_group function. In more detail, when using the
sycl::range parallel_for, DPC++ adjusts the kernel grid size
to spread the computation on all the available device compute units.
If the number of threads specified by the user cannot be sched-
uled concurrently on the device resources, DPC++ applies thread
coarsening in order to perform the reduction in a single-step kernel
execution. The use of thread coarsening under the hood clarifies
the speedup of DPC++ over AdaptiveCpp. In fact, by increasing
the coarsening factor to 4, AdaptiveCpp achieves a 2x speedup
compared to the version without thread coarsening showing the
same performance as DPC++. In contrast, for the DPC++ imple-
mentation adjusting the coarsening factor does not notably impact
performance.

We compare the built-in reduction with a manually implemented
one using local memory, inspired by [17]. On the AMD and NVIDIA
GPUs the kernel reduction benchmark with Intel DPC++ achieves
∼ 2x times speedup compared to the manually implemented local
memory reduction. In contrast, for AdaptiveCpp without consider-
ing the thread coarsening optimization, the two benchmarks have

similar performance. The major performance improvement of ker-
nel reduction over reduction with local memory is registered on
Intel Max 1100 where we have ∼ 8 times speedup for all data types.

Overall the built-in SYCL reduction for both implementations
can be considered a performing and easy-to-write alternative to the
manually implemented reduction. However, the use of SYCL kernel
reductions should not exclude user-driven optimizations such as
thread coarsening. Instead, users can focus on application-specific
optimizations while ignoring the reduction implementation details.

4.4 Group Algorithms
Figure 8 shows the performance comparison between the
reduce_over_group, local memory reduction and kernel reduction
benchmarks on four data types (int32, int64, fp32, fp64) and 150.000.000
elements. The AdaptiveCpp results for the Intel Max 1100 are ex-
cluded due to the absence of support for the reduce_over_group
feature in its implementation. On the Tesla V100S, both implemen-
tations achieve similar performance for all the data types. On AMD
MI100 both implementations have the same behavior for 32-bit
data, while AdaptiveCpp with 64-bit data achieves 2 times speedup
compared to DCP++. The two implementations have different ways
to implement sycl::reduce_over_group. AdaptiveCpp implements the
reduce_over_group in two steps. First, it applies reduction on each
sub-group leveraging shuffle operation mapped to sub-group primi-
tives depending on the target architectures. Then, the results of the
sub-group reductions are loaded into local memory and the final
output is computed using a local memory tree reduction. Differently,
the DPC++ implementation maps reduce_over_group over SPIRV
intrinsics, which are lowered to a sub-group shuffle implementation
on every platform.

On Tesla V100S and AMDMI100, the reduce_over_group achieves
similar performance to the manually implemented reduction, while
on Intel Max 1100 the DPC++ shows 4 times speedup compared to
the manually implemented reduction. Comparing the two possibili-
ties of implementing a reduction using SYCL features we can notice
that for AdaptiveCpp the kernel reduction with coarsening factor 1
and the reduce_over_group benchmark show the same performance
for all the hardware and data types. Differently, in DPC++, even if
kernel reduction is implemented with the sycl::reduce_over_group
there is a 2x speedup compared to reduce_over_group benchmark.
Differently, in DPC++ the reduce_over_group benchmark is 2x slower
compared to the kernel reduction, even if it is implemented using
sycl::reduce_over_group under the hood. The reason behind this
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lies in thread coarsening, which is automatically applied in the
case of kernel reduction with sycl::range. Group algorithms are
available only nd_range parallel_for, therefore no automatic
thread coarsening can be applied.

4.5 Specialization Constants
Figure 9 illustrates the performance achieved by the SpecConst
benchmark as execution time relative to a baseline of using fully
dynamic variables (DynamicValue). SpecConstValue corresponds to
the kernel version using the SYCL 2020 specialization constants
feature, and ConstExprValue sets the weights at static compile time.
The benchmark was performed using 32-bit and 64-bit integer and
floating point data, with a range spanning 1 (IL1), 16 (IL16), and 64
(IL64) inner loop repetitions which represents a progression from
a more heavily memory-bandwidth-limited to a compute-limited
scenario.

In this setup, the expectation for a full, high-quality implemen-
tation of specialization constants would be to achieve performance
between the dynamic baseline and the fully constant weights, ide-
ally as close as possible to the latter. This is what we observe on
the Intel Max 1100 platform. As expected, the potential speedup
scales with the complexity of the individual arithmetic operations
on the target platform, as well as the arithmetic intensity of the
kernel as governed by the IL parameter. For Intel Max 1100, int64
operations are the most expensive in this benchmark, and a speedup
of more than 4x can be observed by using specialization constants
in the int64 / IL64 case.

For both the Tesla V100S and AMD MI100 backends, no kernel
specialization occurs, and the benchmark results instead show the
potential slowdown incurred by a fallback implementation of the
specialization constants API. The maximum relative overhead in
this case is significantly higher on V100S at 20%, but note that
this depends on the quality of the baseline implementation. Three
related curious cases are the performance of int32 / IL16 on
V100S and int32 / IL1+IL16 on MI100 respectively, where the
SpecConstValue implementation outperforms DynamicValue despite
no compile-time specialization being performed. We have verified
that these results are repeatable and consistent, and believe that
they are caused by the kernel compiler heuristics making more ad-
vantageous optimization decisions for these particular cases due to
the code structure produced in the specialization constant version.

In addition to the potential speedup in kernel execution times, a
second relevant aspect influencing the real-world utility of special-
ization constants is the overhead incurred for kernel compilation
after adjusting a specialization constant. Figure 10 illustrates the
relative execution time (compared to each median) across 5 runs
of the benchmark. We observe that the execution times are very
consistent, except for the first run after setting a new specialization
constant value on Intel Max 1100. This result confirms the earlier
observation, based on kernel execution times, that only the Intel
backend currently fully implements specialization constants with
compiler optimizations.

In terms of real-world utility, the absolute cost of these kernel
re-compilation steps is quite relevant. In our benchmarks, com-
piling the kernel can take between 200 and 600 times as long as
executing it once, indicating that specialization constants should
currently only be used on this platform if the specialized kernels
are either executed very frequently without further changes to the
specialization constant values, or if individual kernel execution
times are very high.

4.6 Atomics
The Atomic benchmark has been executed on 4 data types (int32,
int64, fp32, fp64) with 9.400.000 elements. For AdaptiveCpp, we
used both the SMCP (single-source, multiple compiler pass) and the
generic SSCP (single-source, single compiler pass) [7] compilation
flows as they diverge in the atomic implementation strategy.

For the AMD MI100, floating point atomic operations are simu-
lated using a CAS loop. Support for built-in floating-point is rather
incomplete: the functions have no return value, e.g., fetch_add
return void instead of the previous value, and it’s limited to 32-bit
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Figure 11: Atomic operations performance with 32-bit float-
ing point

floating-point. The HIP toolchain exposes the -munsafe-fp-atomics
parameter to enable fast atomic operations: it includes a compiler
pass that checks if the return value of the atomic operations is
used5. If not, issue the fast built-in, otherwise, it falls back to the
CAS loop. Figures 11a and 11b show the execution times achieved
by the atomic benchmark on the Tesla V100S, Intel Max 1100, and
AMD MI100 GPUs using 32-bit floating-point operations. Both
SYCL implementations exhibit similar performance on NVIDIA
Tesla V100S and Intel Max 1100. Differently, atomic operations for
AdaptiveCpp-SSCP and DPC++ are ∼6000 times slower compared
to AdaptiveCpp-SMCP (Figure 11a and 11b). Upon inspecting the
AMD intermediate representation, we observed that for DPC++ and
AdaptiveCpp-SSCP the -munsafe-fp-atomics option is disregarded
leading the compiler to fallback on the CAS loop implementation,
which drastically affects the overall performance. By analyzing
the source code, we found that DPC++ skips the flag and directly
handles the fast atomic built-in generation by manually checking
the target architecture. On the AMD MI100, no builtin is gener-
ated as it lacks the required return value. Therefore, fast atomics
are not available on the MI100 with DPC++. On the other hand,
AdaptiveCpp-SSCP does not use the default clang HIP toolchain,
therefore the flag cannot be interpreted. Conversely, using the
unsafe option with AdaptiveCpp-SMCP the compiler correctly gen-
erates the global_atomic_add_f32 builtin, leading to a ∼ 6000 times
speedup compared to DPC++ and AdaptiveCpp-SSCP. The results
for the 64-bit floating-point, int 32, and int 64 are omitted since
they show trends similar to the one observed for fp32 atomics. Both
SYCL implementations demonstrate comparable performance on
all the hardware. However, the AMD MI100 achieves a 6000x slow-
down on fp64 compared to other hardware due to the lack of fast
atomic support.

On AMD and Intel platforms, we observed some variability in the
execution time depending on the run number. Figure 12 illustrates
the execution time of each run normalized to the median runtime
across 20 runs of the benchmark on AMDMI100 and Intel Max 1100.
Looking at the AMD MI100 results for DPC++ and AdaptiveCpp-
SSCP, we notice that the execution times on fp32 and fp64 curiously
decrease for each run. Instead, AdaptiveCpp-SMCP time decreases
only with fp64. Differently, the execution times on int32 and int64
are consistent for AdaptiveCpp-SMCP and DPC++. We guess that
this behavior is related to the CAS loop, which is generated in all
the results that show this variability. On Intel Max 1100, DPC++
5https://github.com/ROCm-Developer-Tools/hipamd/issues/19

exhibits a high overhead for the first run on int64 and fp64, due
to the JIT compilation process. However, while also AdaptiveCpp-
SSCP relies on JIT compilation, it does not show the same overhead,
probably due to some additional optimizations happening in the
DPC++ toolchain.
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Figure 12: Atomic operations overhead

5 IMPLEMENTATION MATURITY
DPC++ is the only compiler with a functionally correct implemen-
tation of the benchmarked SYCL 2020 features. However, the im-
plementation quality is not uniform across backends. For example,
while specialization constants work as expected on Intel hardware,
on AMD and NVIDIA they might not impact performance at all, or
even be detrimental. The AMD HIP backend in particular appears
to not yet be as mature, e.g., showing excessively high scheduling
overheads.

AdaptiveCpp has a uniform implementation support across back-
ends but there are differences between the older SMCP compilation
flow and the new SSCP compiler. This reflects its implementation
history. For these features that are available in the SMCP compiler
but not in SSCP such as group algorithms or SYCL 2020 reduc-
tions, there are no inherent obstacles for implementing them to
our knowledge. Instead, implementation complexity, especially for
SYCL 2020 reductions, is the driving factor for the delayed imple-
mentation: SYCL 2020 reductions need to work for any data type
(which may or may not be supported in atomic operations), and
any binary operator (whether that operator has a known identity
or not) and they need to work both if the device has sufficient or
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insufficient local memory for a work group reduction in local mem-
ory. They also need to work with both range-based parallel_for,
and nd_range parallel_for which might be implemented using
different execution models under the hood. Providing optimized
reduction implementations for all combinations of these parameters
can be challenging. In this work, we have focused on investigating
simple reductions over simple scalar types. It is however likely that
even more performance and functionality variability can be found
if more cases of reductions are investigated. It is unclear whether
the current, broadly general reduction design in SYCL is benefi-
cial, or whether it ties up implementation resources to cover niche
applications that are rarely needed in practice.

Unfortunately, there are features not covered by AdaptiveCpp:
for example, specialization constants are entirely unimplemented
because of compilation flow issues6. Similar arguments are being
made for other new features not investigated in this work, such
as kernel bundles and host tasks. Using these features is therefore
currently a problem for codes that aim to be portable between the
two implementations.

Both implementations provide a rich set of extensions, cover
roughly the same hardware. AdaptiveCpp’s single-pass compiler
offers a mechanism to build universal binaries that can offload to
all supported devices. Minor portability differences include DPC++
also supporting FPGAs, and AdaptiveCpp currently having more
robust support for non-x86 CPU targets as it can leverage the host
toolchain for kernel compilation. All in all, this implies that the
average user may in practice not need to switch between imple-
mentations at all. This is convenient for users but also reduces the
incentive to avoid implementation-specific idioms or performance
assumptions, or call out the lack of support for specific features
and fix underlying problems in the specification.

6 RELATEDWORK
Benchmark suites offer a systematic approach for evaluating the effi-
ciency, speed, and resource utilization of different coding paradigms.
Several benchmarks have been defined to analyze specific aspects
of computing architectures, compilers, and applications. Bienia et
al. [10] proposed PARSEC a benchmark suite that implements a
set of C/C++ applications from different areas to provide support
in the characterization and development of Chip-Multiprocessors
(CMPs). Kulkarni et al. [24] defined a set of five applications to
study and understand the patterns of parallelism and locality in
sparse graph computations. Moreover, with the rise of heteroge-
neous systems and programmingmodels such as OpenCL and SYCL,
several studies proposed benchmarks to analyze their performance
[12, 18, 20]. Jin et al. [18] developed a SYCL version of Rodinia [12]
a benchmark suite to study CPU and GPU platforms. Danalis et
al. [13] developed SHOC a benchmark suite composed of CUDA
and OpenCL programs specifically designed to analyze the per-
formance of OpenCL over CUDA on different architectures. Jin
et al. [20] proposed HeCbench a collection of benchmarks, and
mini-applications from many open-source projects written with
different programming models (CUDA, HIP, and SYCL) to facilitate
the performance portability evaluation of SYCL. Deakin et al. [14]

6https://github.com/AdaptiveCpp/AdaptiveCpp/issues/1296#issuecomment-
1867849239

enabled memory bandwidth analysis on a wide range of devices
other than CPUs by implementing the four main kernels of the
STREAM benchmark and a dot product, with several programming
models: Kokkos, RAJA, OpenMP, OpenACC, SYCL, OpenCL, and
CUDA.

In recent years, an increasing set of SYCL-specific benchmarks
have been proposed. In particular, some works focused on evaluat-
ing SYCL implementations in terms of compile-time [35], perfor-
mance portability [21, 28, 31], and implementation maturity over
the years [27]. Moreover, several studies focused on optimizing
SYCL for specific target architectures [19, 30]. SYCL 2020 provides
several features to improve the performance and portability of ap-
plications on heterogeneous platforms. Alpay et.al. [5] measured
the usage of interoperability options in SYCL applications using
SYCL host tasks. Ashbaug et.al. [9] analyzed the SYCL 2020 mem-
ory model after the addition of sycl::atomic_ref, as well as novel
features to be added to the SYCL memory model. Joube et.al. [22]
used a PCI-bound microbenchmark to compare USM and Accessors
performance and programmability. While these works provide an
overview of SYCL functionalities, we present the first set of bench-
marks explicitly designed to measure SYCL 2020 functionalities and
performance on a wide range of hardware.

7 CONCLUSIONS
We presented SYCL-Bench 2020, an extension of the SYCL-Bench
benchmark suite to SYCL 2020. We added nine new benchmarks
covering 44 configurations, analyzing six SYCL 2020 features in-
cluding unified shared memory, reduction kernel, specialization
constants, in-order queues, group algorithms, and atomic_ref. Ex-
perimental results on three GPUs and two SYCL implementations
provide interesting results about the potential of each feature as
well as the maturity of the compilers. We show how unified shared
memory can greatly reduce scheduling latency, with up to 3.1x
speedup on Intel GPUs with AdaptiveCpp. Shared allocations per-
form poorly on AMD due to missing hardware support. We also
demonstrated how some feature support depends on the hardware:
specialization constants are not beneficial on platforms such as
NVIDIA and AMD as they lack of toolchain support, leading to
detrimental performance. Both standard implementations showed
similar performance, with only the DPC++ AMD backend appear-
ing to be not as mature as the other backends. In terms of feature
coverage, AdaptiveCpp lacks of specialization constants and reduc-
tions on some devices. Overall, the SYCL 2020 standard in its current
implementations and back-end support already provides excellent
performance portability for most features. In future work, we plan
to extend the analysis to other SYCL 2020 features such as host
tasks, in addition to including missing features from AdaptiveCpp.

ACKNOWLEDGMENTS
This project has received funding from the European Union’s HE
research and innovation programme under grant agreement No.
101092877 (SYCLops) and from the European High-Performance
Computing Joint Undertaking under grant agreement No. 956137
(LIGATE project). Additionally, it has received funding from theAus-
trian Research Promotion Agency (FFG) via the UMUGUC project

https://github.com/AdaptiveCpp/AdaptiveCpp/issues/1296#issuecomment-1867849239
https://github.com/AdaptiveCpp/AdaptiveCpp/issues/1296#issuecomment-1867849239


IWOCL ’24, April 8–11, 2024, Chicago, IL, USA Crisci et al.

(FFG #4814683) and from the Italian Ministry of University and Re-
search under PRIN 2022 grant No. 2022CC57PY (LibreRT project).

REFERENCES
[1] 2012. How to optimize data transfers in CUDA. https://developer.nvidia.com/

blog/how-optimize-data-transfers-cuda-cc/.
[2] 2023. SYCL Specification. https://registry.khronos.org/SYCL/specs/sycl-2020/

html/sycl-2020.html.
[3] 2023. Top500 chart. https://www.top500.org/.
[4] 2024. Cineca official website. https://www.cineca.it/.
[5] Aksel Alpay, Thomas Applencourt, Gordon Brown, Ronan Keryell, and Gregory

Lueck. 2022. Using Interoperability Mode in SYCL 2020. In International Workshop
on OpenCL (Bristol, United Kingdom, United Kingdom) (IWOCL’22). Association
for Computing Machinery, New York, NY, USA, Article 21, 1 pages. https:
//doi.org/10.1145/3529538.3529997

[6] Aksel Alpay and Vincent Heuveline. 2020. SYCL beyond OpenCL: The archi-
tecture, current state and future direction of hipSYCL. In Proceedings of the
International Workshop on OpenCL. 1–1.

[7] Aksel Alpay and Vincent Heuveline. 2023. One Pass to Bind Them: The First
Single-Pass SYCL Compiler with Unified Code Representation Across Backends.
In Proceedings of the 2023 International Workshop on OpenCL (, Cambridge, United
Kingdom,) (IWOCL ’23). Association for Computing Machinery, New York, NY,
USA, Article 7, 12 pages. https://doi.org/10.1145/3585341.3585351

[8] Ben Ashbaugh, Alexey Bader, James Brodman, Jeff Hammond, Michael Kinsner,
John Pennycook, Roland Schulz, and Jason Sewall. 2020. Data parallel c++ en-
hancing sycl through extensions for productivity and performance. In Proceedings
of the International Workshop on OpenCL. 1–2.

[9] Ben Ashbaugh, James C Brodman, Michael Kinsner, Gregory Lueck, John Pen-
nycook, and Roland Schulz. 2021. Toward a Better Defined SYCL Memory
Consistency Model. In International Workshop on OpenCL (Munich, Germany)
(IWOCL’21). Association for Computing Machinery, New York, NY, USA, Article
20, 3 pages. https://doi.org/10.1145/3456669.3456696

[10] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008. The
PARSEC benchmark suite: Characterization and architectural implications. In
Proceedings of the 17th international conference on Parallel architectures and com-
pilation techniques. 72–81.

[11] Lorenzo Carpentieri and Biagio Cosenza. 2023. Towards a SYCL API for Approx-
imate Computing. In Proceedings of the 2023 International Workshop on OpenCL.
1–2.

[12] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W Sheaffer, Sang-
Ha Lee, and Kevin Skadron. 2009. Rodinia: A benchmark suite for heterogeneous
computing. In 2009 IEEE international symposium on workload characterization
(IISWC). Ieee, 44–54.

[13] Anthony Danalis, Gabriel Marin, Collin McCurdy, Jeremy S Meredith, Philip C
Roth, Kyle Spafford, Vinod Tipparaju, and Jeffrey S Vetter. 2010. The scalable
heterogeneous computing (SHOC) benchmark suite. In Proceedings of the 3rd
workshop on general-purpose computation on graphics processing units. 63–74.

[14] Tom Deakin, James Price, Matt Martineau, and Simon McIntosh-Smith. 2018.
Evaluating attainable memory bandwidth of parallel programming models via
BabelStream. International Journal of Computational Science and Engineering 17,
3 (2018), 247–262.

[15] Kaijie Fan, Marco D’Antonio, Lorenzo Carpentieri, Biagio Cosenza, Federico
Ficarelli, and Daniele Cesarini. 2023. SYnergy: Fine-grained Energy-Efficient Het-
erogeneous Computing for Scalable Energy Saving. In International Conference
for High Performance Computing, Networking, Storage and Analysis (SC).

[16] Andrew Gozillon, Ronan Keryell, Lin-Ya Yu, Gauthier Harnisch, and Paul Keir.
2020. triSYCL for Xilinx FPGA. In The 2020 International Conference on High
Performance Computing and Simulation. IEEE.

[17] Mark Harris et al. 2007. Optimizing parallel reduction in CUDA. NVIDIA developer
technology 2, 4 (2007), 1–39.

[18] Zheming Jin. 2020. The rodinia benchmark suite in SYCL. Technical Report. Ar-
gonne National Lab.(ANL), Argonne, IL (United States). Argonne Leadership . . . .

[19] Zheming Jin and Jeffrey S Vetter. 2022. Understanding performance portability
of bioinformatics applications in sycl on an nvidia gpu. In 2022 IEEE International
Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2190–2195.

[20] Zheming Jin and Jeffrey S Vetter. 2023. A Benchmark Suite for Improving Perfor-
mance Portability of the SYCL Programming Model. In 2023 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS). IEEE,
325–327.

[21] Beau Johnston, Jeffrey S. Vetter, and Josh Milthorpe. 2020. Evaluating the
Performance and Portability of Contemporary SYCL Implementations. In 2020
IEEE/ACM International Workshop on Performance, Portability and Productivity in
HPC (P3HPC). 45–56. https://doi.org/10.1109/P3HPC51967.2020.00010

[22] S Joube, H Grasland, D Chamont, and E Brunet. 2023. Comparing SYCL data
transfer strategies for tracking use cases. Journal of Physics: Conference Series
2438, 1 (feb 2023), 012018. https://doi.org/10.1088/1742-6596/2438/1/012018

[23] Yinan Ke, Mulya Agung, and Hiroyuki Takizawa. 2021. NeoSYCL: A SYCL
Implementation for SX-Aurora TSUBASA. In The International Conference on
High Performance Computing in Asia-Pacific Region (Virtual Event, Republic of
Korea) (HPC Asia 2021). Association for Computing Machinery, New York, NY,
USA, 50–57. https://doi.org/10.1145/3432261.3432268

[24] Milind Kulkarni, Martin Burtscher, Calin Casçaval, and Keshav Pingali. 2009. Lon-
estar: A suite of parallel irregular programs. In 2009 IEEE International Symposium
on Performance Analysis of Systems and Software. IEEE, 65–76.

[25] Sohan Lal, Aksel Alpay, Philip Salzmann, Biagio Cosenza, Alexander Hirsch,
Nicolai Stawinoga, Peter Thoman, Thomas Fahringer, and Vincent Heuveline.
2020. SYCL-Bench: A Versatile Cross-Platform Benchmark Suite for Heteroge-
neous Computing. In Euro-Par 2020: Parallel Processing, Maciej Malawski and
Krzysztof Rzadca (Eds.). Springer International Publishing, Cham, 629–644.

[26] Andrew Lavin. 2015. Fast Algorithms for Convolutional Neural Networks. CoRR
abs/1509.09308 (2015). arXiv:1509.09308 http://arxiv.org/abs/1509.09308

[27] Wei-Chen Lin, Tom Deakin, and Simon McIntosh-Smith. 2021. On Measuring the
Maturity of SYCL Implementations by Tracking Historical Performance Improve-
ments. In International Workshop on OpenCL (Munich, Germany) (IWOCL’21).
Association for Computing Machinery, New York, NY, USA, Article 8, 13 pages.
https://doi.org/10.1145/3456669.3456701

[28] Nenad Mijić and Davor Davidović. 2023. Benchmark DPC++ code and perfor-
mance portability on heterogeneous architectures. In 2023 46th MIPRO ICT and
Electronics Convention (MIPRO). 331–337. https://doi.org/10.23919/MIPRO57284.
2023.10159832

[29] Tetsu Narumi, Yousuke Ohno, Noriaki Okimoto, Takahiro Koishi, Atsushi Sue-
naga, Noriyuki Futatsugi, Ryoko Yanai, Ryutaro Himeno, Shigenori Fujikawa,
Makoto Taiji, and Mitsuru Ikei. 2006. Gordon Bell finalists II - A 55 TFLOPS
simulation of amyloid-forming peptides from yeast prion Sup35 with the special-
purpose computer system MDGRAPE-3. In Proceedings of the ACM/IEEE SC2006
Conference on High Performance Networking and Computing, November 11-17,
2006, Tampa, FL, USA. ACM Press, 49. https://doi.org/10.1145/1188455.1188506

[30] Goutham Kalikrishna Reddy Kuncham, Rahul Vaidya, and Mahesh Barve. 2021.
Performance Study of GPU applications using SYCL and CUDA on Tesla V100
GPU. In 2021 IEEE High Performance Extreme Computing Conference (HPEC). 1–7.
https://doi.org/10.1109/HPEC49654.2021.9622813

[31] Istvan Z Reguly. 2023. Evaluating the performance portability of SYCL across
CPUs and GPUs on bandwidth-bound applications. In Proceedings of the SC’23
Workshops of The International Conference on High Performance Computing, Net-
work, Storage, and Analysis. 1038–1047.

[32] Philip Salzmann, Fabian Knorr, Peter Thoman, Philipp Gschwandtner, Biagio
Cosenza, and Thomas Fahringer. 2023. An Asynchronous Dataflow-Driven
Execution Model For Distributed Accelerator Computing. In 2023 IEEE/ACM
23rd International Symposium on Cluster, Cloud and Internet Computing (CCGrid).
82–93. https://doi.org/10.1109/CCGrid57682.2023.00018

[33] David E. Shaw, J.P. Grossman, Joseph A. Bank, Brannon Batson, J. Adam Butts,
Jack C. Chao,MartinM. Deneroff, RonO. Dror, Amos Even, ChristopherH. Fenton,
Anthony Forte, Joseph Gagliardo, Gennette Gill, Brian Greskamp, C. Richard Ho,
Douglas J. Ierardi, Lev Iserovich, Jeffrey S. Kuskin, Richard H. Larson, Timothy
Layman, Li-Siang Lee, Adam K. Lerer, Chester Li, Daniel Killebrew, Kenneth M.
Mackenzie, Shark Yeuk-Hai Mok, Mark A. Moraes, Rolf Mueller, Lawrence J.
Nociolo, Jon L. Peticolas, Terry Quan, Daniel Ramot, John K. Salmon, Daniele P.
Scarpazza, U. Ben Schafer, Naseer Siddique, Christopher W. Snyder, Jochen
Spengler, Ping Tak Peter Tang, Michael Theobald, Horia Toma, Brian Towles,
Benjamin Vitale, Stanley C. Wang, and Cliff Young. 2014. Anton 2: Raising
the Bar for Performance and Programmability in a Special-Purpose Molecular
Dynamics Supercomputer. In SC ’14: Proceedings of the International Confer-
ence for High Performance Computing, Networking, Storage and Analysis. 41–53.
https://doi.org/10.1109/SC.2014.9

[34] Peter Thoman, Daniel Gogl, and Thomas Fahringer. 2021. Sylkan: Towards a
Vulkan Compute Target Platform for SYCL (IWOCL’21). Association for Comput-
ing Machinery, New York, NY, USA, Article 3, 12 pages. https://doi.org/10.1145/
3456669.3456683

[35] Peter Thoman, Facundo Molina Heredia, and Thomas Fahringer. 2022. On the
Compilation Performance of Current SYCL Implementations. In International
Workshop on OpenCL (Bristol, United Kingdom, United Kingdom) (IWOCL’22).
Association for Computing Machinery, New York, NY, USA, Article 6, 12 pages.
https://doi.org/10.1145/3529538.3529548

[36] Jeffrey S. Vetter, Ron Brightwell, Maya Gokhale, Pat McCormick, Rob Ross, John
Shalf, Katie Antypas, David Donofrio, Travis Humble, Catherine Schuman, Brian
Van Essen, Shinjae Yoo, Alex Aiken, David Bernholdt, Suren Byna, Kirk Cameron,
Frank Cappello, Barbara Chapman, Andrew Chien, Mary Hall, Rebecca Hartman-
Baker, Zhiling Lan, Michael Lang, John Leidel, Sherry Li, Robert Lucas, John
Mellor-Crummey, Paul Peltz Jr., Thomas Peterka, Michelle Strout, and Jeremiah
Wilke. 2018. Extreme Heterogeneity 2018 - Productive Computational Science in
the Era of Extreme Heterogeneity: Report for DOE ASCR Workshop on Extreme
Heterogeneity. (12 2018). https://doi.org/10.2172/1473756

https://developer.nvidia.com/blog/how-optimize-data-transfers-cuda-cc/
https://developer.nvidia.com/blog/how-optimize-data-transfers-cuda-cc/
https://registry.khronos.org/SYCL/specs/sycl-2020/html/sycl-2020.html
https://registry.khronos.org/SYCL/specs/sycl-2020/html/sycl-2020.html
https://www.top500.org/
https://www.cineca.it/
https://doi.org/10.1145/3529538.3529997
https://doi.org/10.1145/3529538.3529997
https://doi.org/10.1145/3585341.3585351
https://doi.org/10.1145/3456669.3456696
https://doi.org/10.1109/P3HPC51967.2020.00010
https://doi.org/10.1088/1742-6596/2438/1/012018
https://doi.org/10.1145/3432261.3432268
https://arxiv.org/abs/1509.09308
http://arxiv.org/abs/1509.09308
https://doi.org/10.1145/3456669.3456701
https://doi.org/10.23919/MIPRO57284.2023.10159832
https://doi.org/10.23919/MIPRO57284.2023.10159832
https://doi.org/10.1145/1188455.1188506
https://doi.org/10.1109/HPEC49654.2021.9622813
https://doi.org/10.1109/CCGrid57682.2023.00018
https://doi.org/10.1109/SC.2014.9
https://doi.org/10.1145/3456669.3456683
https://doi.org/10.1145/3456669.3456683
https://doi.org/10.1145/3529538.3529548
https://doi.org/10.2172/1473756

	Abstract
	1 Introduction
	2 Background
	2.1 From SYCL 1.2.1 to SYCL 2020
	2.2 SYCL 2020 Current Implementations

	3 SYCL 2020 Benchmarked Features
	3.1 Unified Shared Memory
	3.2 In-order queue
	3.3 Reduction Kernel
	3.4 Group Algorithms
	3.5 Specialization Constants
	3.6 Atomics

	4 Experimental Evaluation
	4.1 Unified Shared Memory
	4.2 In-order Queue
	4.3 Reduction Kernel
	4.4 Group Algorithms
	4.5 Specialization Constants
	4.6 Atomics

	5 Implementation Maturity
	6 Related Work
	7 Conclusions
	Acknowledgments
	References

