
Load Balancing in Mesh-like Computations using Prediction Binary Trees ∗

Biagio Cosenza Gennaro Cordasco Rosario De Chiara

Vittorio Scarano

ISISLab, Dipartimento di Informatica ed Applicazioni “R.M. Capocelli”

Università degli Studi di Salerno, Salerno (Italy)

{cosenza, cordasco, dechiara, vitsca}@dia.unisa.it
Ugo Erra

Dipartimento di Matematica e Informatica

Università degli Studi della Basilicata, Potenza (Italy)

ugo.erra@unibas.it

Abstract
We present a load-balancing technique that exploits

the temporal coherence, among successive computation

phases, in mesh-like computations to be mapped on a clus-

ter of processors. Our method partitions the computation

in balanced tasks and distributes them to independent pro-

cessors through the Prediction Binary Tree (PBT). At each

new phase, current PBT is updated by using previous phase

computing time (for each task) as (next phase) cost estimate.

The PBT is designed so that it balances the load across the

tasks as well as reduce dependency among processors for

higher performances. Reducing dependency is obtained by

using rectangular tiles of the mesh, of almost-square shape

(i.e. one dimension is at most twice the other). By reduc-

ing dependency, one can reduce inter-processors communi-

cation or exploit local dependencies among tasks (such as

data locality).

Our strategy has been assessed on a significant problem,

Parallel Ray Tracing. Our implementation shows a good

scalability, and improves over coherence-oblivious imple-

mentations. We report different measurements showing that

granularity of tasks is a key point for the performances of

our decomposition/mapping strategy.

1 Introduction

Parallel Computing

The evolution of computer science in the last 2 decades

has been characterized by the architectural shift that has

∗A portion of this work was carried out under the HPC-EUROPA++

project (project number: 211437), with the support of the European Com-

munity - Research Infrastructure Action of the FP7.

brought centralized computation paradigm toward dis-

tributed architectures where data processing and data stor-

ing are cooperatively performed on several nodes, intercon-

nected by a network.

The problem of scheduling a parallel program to a set

of homogeneous processor for minimizing the completion

time (that is the time when the last processor complete its

job) of the program has been extensively studied (see [11]

for a comprehensive presentation). Indeed, dividing a com-

putation (henceforth, decomposition) into smaller compu-

tations (tasks) and assigning them to different processors

for parallel executions (named mapping), represent two key

steps in the design of parallel algorithms [12].

The number and size of tasks which a given computation

is decomposed into determines the granularity of the de-

composition. It may appear that the time required to solve

a problem can be easily reduced, by simply increasing the

granularity of decomposition, in order to perform more and

more tasks in parallel, but this is not always true. Typi-

cally, interaction between tasks, and/or other important fac-

tor, limits our choice to coarse-grained granularity. The in-

teraction between tasks is a direct consequence of the fact

that exchanging information (e.g. input, output, or interme-

diate data) is usually needed.

A good mapping strategy should strive to achieve two

conflicting goals: (1) balance the overall load distribution,

and (2) minimize tasks inter-processors dependency; by

mapping tasks with a high degree of mutual dependency

onto the same processor. As an example of dependency,

many mapping strategies exploits tasks’ locality to reduce

inter-processors communications (see [16]) but it should be

emphasized that dependency can also refer to other issues

such as locality of access to memory (effective usage of



caching).

The mapping problem becomes quite intricate if one has

to consider that: (1) task sizes are not uniform, that is,

the amount of time required by each task may vary signif-

icantly; (2) task sizes are not known a priori; (3) different

mapping strategies may provide different overheads (such

as scheduling and data-movement overhead). Indeed, even

when task sizes are known, in general, the problem of ob-

taining an optimal mapping is an NP-complete problem for

non-uniform tasks (to wit, it can be reduced to the 0-1 Knap-

sack problem [7]).

Mesh-like computations. In this paper, we focus our

study on mesh-like computations, where a set of t inde-

pendent tasks are represented as items in a
√

t ×
√

t mesh.

Edges among items in this mesh represent tasks depen-

dencies. In particular, we are interested in tiled mapping

strategies where the whole mesh is partitioned into m tiles

(i.e., contiguous 2-dimensional blocks of items). Tiles have

almost-square shape, that is, one dimension is at most twice

the other: in this way, assuming the load in processors

is balanced (in terms of nodes), the dependencies inter-

processors are minimized because of isoperimetric inequal-

ity in the Manhattan grid.

Tiled mappings are particularly suitable to exploit the lo-

cal dependencies among tasks, be it the locality of interac-

tion, i.e., when computation of a item requires other nearby

items in the mesh or when there is a spatial coherence, i.e.,

when computation of neighbors item access to some com-

mon data. Hence, tiled mapping, in the former case, reduces

the interaction overhead, and, in the latter case, improves

the reuse of recently data access (cache).

We are interested in decomposition/mapping strategy for

step-wise mesh-like computations, i.e. data is computed in

successive phases. We assume that each task size is roughly

similar among consecutive phases, that is, the amount of

time required by item p in phase f is comparable to the

amount of time required by p in phase f + 1 (temporal co-

herence).

Our result

In this paper we present a decomposition/mapping strat-

egy for parallel mesh-like computations that exploits the

temporal coherence, among computation phases, to perform

load balancing on tasks. Our goal is to use temporal coher-

ence to estimate the computing time of a new computation

phase using previous phase computing time. Our strategy

performs a semi-static load balancing (decisions are made

before each computing phase). Temporal coherence is ex-

ploited using a Prediction Binary Tree where each leaf rep-

resents a tile which will be assigned to a worker as a task. At

the beginning of every new phase, the mapping strategies,

taking into account the previous phase times as estimates,

evaluates the chance of updating the binary tree. Due to the

temporal coherence property it provides an efficient map-

ping.

We validate our strategy by using interactive rendering

with Parallel Ray Tracing [22] algorithm, as a significant

example of such a kind of computations. In this example

our technique is applied rather naturally. Indeed, interactive

Ray tracing can be seen as a step-wise computation, where

each frame to be rendered, represents a phase. Moreover,

each frame can be described as a mesh of items (pixels)

and successive computations are typically characterized by

temporal coherence.

For parallel ray tracing, our technique experimentally

exhibits good scalability and good performances improve-

ments, with different granularity (size of tiles), with respect

to the static assignment of tiles (tasks) to processors.

It should be said that, besides other graphical applica-

tions (e.g. image dithering), further examples of mesh-like

computation where our techniques can be fruitfully used

range from simple cases, such as matrix multiplication, to

more complex computations, such as Distributed Adaptive

Grid Hierarchies [17].

Previous Works

In [15], a greedy strategy is proposed for the dynamic

remapping of step-wise data parallel applications, such as

fluid dynamics problems, on a homogeneous architecture.

In these types of problems, multiple processors work in-

dependently on different regions of the data domain during

each step. Between iterations, remapping is used for balanc-

ing the workload across the processors and thus, reducing

the execution time. Unfortunately, this approach does not

take care of locality of interaction and/or spatial coherence.

Several online approaches have also been proposed. An

example is the work stealing model [3]. In this model when

a processor completes its task it attempts to steal tasks as-

signed to other processors. We notice that, although online

strategies are shown to be powerful [3] and stable [1], they

introduce communication overhead anyway. Furthermore,

it is worth noting that online strategies, like work stealing,

can be integrated with our assignment policy. In that case,

being our load balancing efficient, online strategies intro-

duce smaller overheads.

Many researchers have explored the use of time-

balancing models to predict execution time in heteroge-

neous and dynamic environments. In this environments,

performance processors are both irregular and time-varying

because of uneven underlying load on the various resources.

In [23] authors use a conservative load prediction in order to

predict the resource capacity over the future time interval.

They use expected mean and variance of future resource ca-

pabilities in order to define an appropriate data mappings

for dynamic resources.



Organization of the paper

In the next section we present the strategy and introduce

the Prediction Binary Tree, proving how effective is its up-

dating at each phase.

Then, in Section 3, we instantiate our techniques for a

parallel ray tracing application: we, first, describe the prob-

lem, the implementation and, then, show how experiments

validate our statements of effectiveness and scalability for

the strategy.

Finally, in Section 4, we conclude the paper with com-

ments and further directions of research.

2 Our Strategy

Our strategy is based on a traditional data parallel

model. In this model, tasks are mapped onto processors

and each task performs similar operations on different data

(Principal Data Items (PDIs)). Auxiliary global informa-

tion (Additional Data Items (ADIs)) are replicated on all the

workers. This parallelization approach is particularly suited

to the Master-workers paradigm.

In this paradigm, the master divides the whole job (the

whole mesh) into a set of tasks, usually represented by tiles.

Then, each task is sent to a worker which elaborates the tiles

and sends back the partial output. If other tiles are not yet

computed, the master sends another task to the worker that

just finished its own. Finally, the master obtains the results

of the whole computation reassembling partial outputs.

Crucial point in this paradigm is the granularity of the

mesh decomposition: in fact, the relationship between m,

number of tiles, and n, number of workers, strongly influ-

ences the performances.

There are two opposite driving forces that act upon this

design choice. The first one is concerned about the load

balancing and requires m to be larger than n. In fact, if

a tile corresponds to a zone of the mesh which requires a

large amount of computation, then, it requires much more

time with respect to a simpler tile. Then, a simple strategy

to obtain a fair load balancing is to increase the number of

tiles, so that the complexity of a zone of the mesh is shared

among different items.

On the opposite side, two considerations would ask for

smaller m. In fact, an algorithm that has large m requires

more communication costs than an algorithm with smaller

m, both in latency (more messages) and bandwidth (com-

munication overhead for each message). Other considera-

tion that would require small m are locality of interaction

and spatial coherence.

Our strategy takes into account all the considerations

above, by addressing the uneven spread of the load with

the Prediction Binary Tree that, with a negligible overhead,

keeps the load balanced without resorting to increase the

number of tiles. Thereby, our solution does not increase

significantly the data-movement overhead, reduces tasks in-

teractions, and uses effectively the local cache of workers.

Therefore, we are able to address simultaneously and pos-

itively all the issues above, by providing a technique that

uses a moderate amount of tiles.

The Prediction Binary Tree

In this section we present how we use the Prediction Bi-

nary Tree (PBT) to help balancing the load among the com-

puting items. The PBT is in charge of directing the tiling-

based load balancing strategy as follows: each computing

phase is split into a set of m tiles (we assume, here, for sake

of simplicity that m = n but the arguments apply to general

cases) whose size is adjusted accordingly to (an estimated)

tile computing time that is set as the computational time as

measured during the preceding phase. The hypothesis is

that the computing time required by a tile on two consecu-

tive phases are quite similar because of temporal coherence.

We, now, define the Prediction Binary Trees and, then,

describe an on-line algorithm which, before each computing

phase, resizes unbalanced tiles in such a way to minimize

the mesh computing time.

A PBT T stores the current tiling being defined as a

rooted binary tree with exactly m leaves, in which each (in-

ternal) node has 2 children. The root of T , called r, repre-

sents the complete mesh. The (two) children of an internal

node v store the two halves (more details follow on how the

mesh is split) of the mesh represented by v. Consequently,

each level of T represents a partition of the mesh. More-

over, each internal node v represents a tile which is the sum

of the tile assigned to the leaves of the tree rooted in v and

consequently, the leaves of T (henceforth L(T )) represents

a partition of the mesh. In order to maintain a good spa-

tial coherence and minimize tasks interaction, the children

of an internal node v which belongs to an odd (resp. even)

level of T are obtained halving the tile in t along the hor-

izontal (resp. vertical) axes. This assure that tiles have an

almost-square shape (i.e. one dimension is at most twice

the other). Each leaf ℓ ∈ L(T ) also stores two variables:

e(ℓ) that is the estimate of the time for computing tile in ℓ

and t(ℓ) that is time used by a worker to compute (in the

last phase) the tile in ℓ. Figure 1 gives an example of a PBT,

with the corresponding mesh partition on the left.

Updating PBT. The PBT stores the subdivision of tiles

and each leaf of T is a task to be assigned to a worker. At the

end of each phase, the PBT receives (with the tile output)

also the information about the time that each worker has

spent on the tile. This time is received as t(ℓ) for each leaf,

and is used as estimate by copying it into e(ℓ). By using

the previous phase times as estimates, the PBT is efficiently



Figure 1: An example of a PBT tree: the mesh on the left has been computed with the computation times (in ms) for each tile shown on

the leaves.

updated for the next phase. Here we describe a provably

effective and efficient way of changing the PBT structure

so that the next phase can be executed (given the temporal

coherence) more efficiently, i.e., equally balancing the load

among the processors.

We, first, define the variance as a metric to measure the

(estimated) computational unbalance that is expected given

the tiling provided by the PBT T .

σ2
T =

1

m

∑

ℓ∈L(T )

(e(ℓ) − µT )2,

where e(ℓ) represents the estimated time to compute the

corresponding tile to the leaf ℓ of T and µT is the

estimated average computational time, that is, µT =
1
m

∑

ℓ∈L(T ) e(ℓ). Clearly, the smaller the variance σ2
T

is the

better is T ’s balancing of the load to the processors.

Given a PBT T at the end of a phase, the estimated com-

putation time associated to each leaf, e(ℓ), is taken by the

computation time t(ℓ) at the phase just executed; then, we

use a greedy algorithm that finds the new PBT T ∗. The

idea of the algorithm PBT-Update (shown as Algorithm 1)

is to perform a sequence of simultaneous split-merge opera-

tions, that consists in splitting a tile whose estimated load is

“high”, and merge two tiles (stored at sibling nodes) whose

(combined) estimated load is “small”.

We now prove, by means of the following theorem, that

the PBT-Update algorithm terminates.

Theorem 1 Algorithm PBT-Update terminates after a fi-

nite number of iterations.

Proof. We will show that PBT-Update goes from a PBT

T = T (0) to a PBT T (s) = T ∗ through a set of PBTs

T (1), T (2), . . . , T (s−1) in such a way that σ2
T (i) > σ2

T (i+1)

for each i = 0, . . . , s − 1.

Let T be a PBT tree and T ′ be obtained from T by split-

ting a leaf ℓa into two leaves ℓa1
and ℓa1

and merging two

sibling leaves ℓb1 and ℓb1 into ℓb.

We, first, prove that, if e(ℓa)2 > 4e(ℓb1)e(ℓb2) then σ2
T

>

σ2
T ′ . So, it is not possible to improve the variance of the

(estimation of the) computational time by means of a si-

multaneous split-merge operation if e(ℓa)2 ≤ 4e(ℓb1)e(ℓb2)
which is the test in line 8 of the algorithm.

Let us evaluate the difference between the variance on T

and the variance on T ′.

σ2
T =

1

m

∑

ℓ∈L(T )

(e(ℓ) − µT )2 =

=
1

m







∑

ℓ∈L(T )

e(ℓ)2 − 1

m





∑

ℓ∈L(T )

e(ℓ)





2





.

Hence, we have

σ2
T−σ2

T ′ =
1

m







∑

ℓ∈L(T )

e(ℓ)2− 1

m





∑

ℓ∈L(T )

e(ℓ)





2





−

1

m







∑

ℓ∈L(T ′)

e(ℓ)2− 1

m





∑

ℓ∈L(T ′)

e(ℓ)





2





.

Since, by the operations executed in lines 12-13 and 15 of

the algorithm, it holds that
∑

ℓ∈L(T )e(ℓ) =
∑

ℓ∈L(T ′)e(ℓ),
then, we have that:

σ2
T−σ2

T ′ =
1

m

(

e(ℓa)2

2
−2e(ℓb1)e(ℓb2)

)



Figure 2: A merge and split operation on the PBT tree of Figure 1 where the estimation times e(ℓ) drive the updates.

Then, if e(ℓa)2 > 4e(ℓb1)e(ℓb2), a split-merge operation

can improve the variance of the times on the tree. The result

follows by the observation that the variance is positive, by

definition.

Algorithm 1 PBT-Update

1: T ← CurrentPBT
2: for all ℓ ∈ L(T ) do

3: copy computational time t(ℓ) in estimated time e(ℓ)
4: end for

5: while true do

6: let ℓa be the leaf in T with max e(ℓ), ∀ℓ ∈ L(T )
7: let ℓb1

, ℓb2
be the two siblings such that e(ℓb1

) · e(ℓb2
) is mini-

mized over all the pairs of siblings in L(T )
8: if e(ℓa)2 ≤ 4 e(ℓb1

) · e(ℓb1
) then

9: return T
10: else

11: Split ℓa in ℓa1 and ℓa2 // Now ℓa is internal

12: e(ℓa1 )← e(ℓa)/2
13: e(ℓa2 )← e(ℓa)/2
14: Merge ℓb1

and ℓb2
into ℓb // Now ℓb is a leaf

15: e(ℓb)← e(ℓb1
) + e(ℓb2

)
16: end if

17: end while

Finally, it should be noticed that the improvement on the

variance is proportional to e(ℓa)2 − 4e(ℓb1)e(ℓb2), then at

each step, the greedy algorithm PBT-Update chooses ℓa and

the siblings pair ℓb1 and ℓb2 (in lines 6-7) in order to have

the higher (local) improvement in variance.

An example of a PBT is shown in Figure 1, and one of

the updates of the PBT-Update algorithm is shown in Figure

2.

3 Case study: Parallel Ray Tracing

Ray Tracing [18, 20] is a widely used algorithm for ren-

dering images aiming at a high realism. It is the core tech-

nique underlying several global illumination algorithms.

The input for ray tracing is a scene description that specifies

the geometry of objects together with the definition of ev-

ery object materials, position/orientation of the lights. The

output is an image of the scene as seen through a virtual

camera.

For sake of clarity we will shortly summarize the ray

tracing algorithm. For each pixel (x, y) in the final image a

ray is casted from the virtual camera through the scene, it is

called primary ray. If exists, the first object is determinate.

Based on the intersection point, the surface properties, the

position and the color of lights, the light intensity at the in-

tersection point is computed. In the Whitted-style ray trac-

ing [22] a ray can be reflected and/or refracted according

to surface properties and the process is repeated recursively

with these new rays. At the end, the process adds the light

intensities at all intersection points in order to get the final

color of the pixel. Then, it is quite obvious that ray tracing

is computationally intensive which is directly bound to the

amount of rays shot throughout the scene.

Since its introduction several techniques have been ex-

plored to accelerate ray tracing. In animated scenes we

report an interesting observation about the fact that a new

frame can be very similar to the previous frame if the view-

point did not change drastically. This similarity is an in-

stance of the concept of temporal coherence (cft. Section 1)

and can be exploited to reduce the amount of calculations

needed for every new frame [5] .

A common way of exploiting the temporal coherence is

the interpolation [19, 6]: the amount of calculations needed

to render pixel p′ is reduced re-using (i.e. interpolating)

information calculated for pixel p.

Parallel Ray Tracing. Ray tracing has been defined “em-

barrassingly parallel” [9] because no particular effort is



Figure 3: A frame in the walk-trough for scene ERW6, with the

tiling shown.

needed to segment the problem in tasks and there is no

strict dependency between parallel tasks. Each task can

be computed independently from every other task in order

to achieve a speed up. There are two different approaches

in designing a parallel ray tracer: object-based and screen-

based [4]. In objects-based approach the scene is distributed

among clients. For each ray casted the clients forward rays

between clients. In the screen-based approach the scene is

replicated on each client and the rendering of pixels is as-

signed to different clients. The second approach is the one

investigated in this paper by a frame to frame load partition-

ing schema.

Speeding up parallel ray tracing for interactive use on

multi-processor machine has received a big impulse during

last years, thanks to an efficient implementation designed to

fit the capabilities of modern CPUs [2] and the use of com-

modity PC clusters [21]. In particular, several techniques

are employed to amortize communication costs and manage

load balancing. In [21] is suggested a task prefetching and

work stealing, whereas [8] is presented a distributed load

balancer.

Exploiting PBT for Parallel Ray Tracing

In order to exploit the PBT to accelerate Parallel Ray

Tracing (PRT) algorithm we provide here a mapping be-

tween the concepts of the general case, introduced in previ-

ous sections, and the concepts strictly bounded to the Ray

Tracing. The computation carried out in the PRT is the ren-

dering of a sequence of frames. Every frame is rendered

pixel by pixel; in terms of PBT acceleration each of these

pixels is an item of the mesh. The memory buffer where

each frame of the sequence is rendered can be considered a√
t ×

√
t mesh that represent an image: the PDIs managed

by nodes are portions of this frame. The information that

is available on every worker (ADI) and used to perform the

assigned task is the scene description. The number of prim-

itives, usually triangles, the dimension of the textures to be

mapped on the geometry and the number of light sources

are elements that increase the computational complexity of

a scene to be rendered.

The master divides the frame buffer in tiles, that is rect-

angular areas of pixels, that are assigned to workers to be

rendered. Since two rays will follow similar path if they are

close, in order to make an effective usage of the local cache

for each node, it is important that the tiles are contiguous

and large enough, so that each worker can exploit spatial

coherence of tiles, having a good degree of (local) cache

hits. Another task performed by the master is to handle the

frame buffer for both visualization or to save it into a file.

The granularity of our decomposition strategy is chosen

defining m = k · n where m is the number of tiles, n is

the number of workers and k is multiplicative constant. The

greater is k, the smaller is tiles sizes. We experimentally

tested several values of k and found that no large k is needed

since after small values of k performances degrades due to

the higher communication cost.

Implementation

Our serial implementation of ray tracing algorithm ex-

ploits some, but not all, optimizations techniques used by

last cutting-edge ray tracers. Actually, the kind of serial im-

plementation that is used is not relevant for our purposes.

We implemented a synchronous render system, with a

synchronization barrier at the end of each frame for vi-

sualization and camera update purpose. Furthermore, we

adopt a demand driven task management strategy where

a task manager maintains a pool of already constituted

tasks. On receipt of a request from a worker the task man-

ager dispatches the next available task from the pool (for

k > 1). We also added a threshold to the number of single

merge/split updates into the PBT-Update algorithm in order

to avoid to perform many small changes to the tree that do

not affect much the overall performances.

We coded our system in C++, compiling it with Intel

C++ Compiler 10.1 for Linux. We used MPI [13] for node

communications, having care to disable Nagle algorithm

[14] in order to decrease latency.

Experiments and Results

Because the aim of this work is to exploit temporal co-

herence in load balancing, we decided to use a distributed

memory system, as a cluster of workstations, and test scenes

with remarkable unbalancing between tiles.



Figure 4: Frame rate on increasing k comparing static and semi-static (i.e., using the PBT) job assignments. (Left ERW6. Right ERW6-4

test scene)

Setting of the experiments. We ran several tests on two

hardware platform:

Hydra: an IBM BladeCenter Cluster of 33 nodes (1 master

node, 32 worker nodes). Each node has an Intel Pen-

tium IV processor running at 3.20 GHz, with 1 GB of

main memory and CentOS 5 Linux as operating sys-

tem with OpenMPI version 1.1.1 for message passing.

All the nodes are interconnected with a Gigabit Ether-

net network.

Cacau: a NEC Xeon EM64T Cluster available at HLRS

High Performance Computing Center at the Stuttgart

Universität. We used up to 64 nodes, each equipped

with 2 Intel Xeon EM64T processors and 1 GB of main

memory, interconnected with a Infiniband 1000 MB/s.

We tested our scheme on two scenes, each of them with

different shading aspects. Since the focus is on manage un-

balancing, we used a modified standard ERW6 test scene

(see Figure 3) (about one thousand primitives in total). Un-

balancing is due to the surface shading properties used in

the scene. We developed two versions of this test scene:

ERW6, has one point light source; ERW6-4 has four light

sources. The more light sources are present in the scene

the bigger is unbalancing because of the increased number

of rays to be shot. In both test scenes, we have a prede-

fined a walk-through of the camera around the scene, with

movements in all directions and rotations too. The image

resolution is 512 × 512 pixels.

Effectiveness of Prediction Binary Tree. In these tests,

ran on Hydra, we evaluate the improvement provided by

using the PBT instead of a static demand-driven balancing

strategy.

The results are shown in Figure 4 for both scenes. Re-

sults are obtained using different granularity and n = 32

workers. Our technique offers a speedup for all the values

of k tested. When k is large, the performances degrade due

to two factors: the number of updates on the PBT increases.

Our test shows that there are few updates for smaller values

of k, but they grow quickly as along as k increases. The

second is related to the heuristic that we have chosen. In-

deed, measuring the rendering time for tiny tile has some

approximation problems due to discretization. Our algo-

rithm gives good performances for small values of m. For

big values of m, tiling algorithm may be a bottleneck. For

this reason we implemented a simple limitation on the num-

ber of split/merge operations that gives a trade off between

tile balancing and tile tree updating time.

Scalability. We compared our schema based on the PBT

against a regular subdivision schema with 2, 4, 8, 16, 32

and 64 processors, in order to evaluate the efficiency of our

strategy (see Figure 5). The tests, ran on Cacau, shows that

our schema works always better than the regular one, and

presents almost linear scalability. However, the test with

64 processors also shows that when the number of tiles in-

creases the use of an adaptive subdivision is still not enough

in order to assure a good scalability.

4 Conclusions and Future Works

We present a scheduling strategy that: (i) improves load

balancing; (ii) allows to exploit temporal coherence among

successive computation phases; (iii) minimizes the inter-

processors dependency. By some assumptions on tempo-

ral coherence, we showed that an estimate of next phase

workload can be used to quickly divide the mesh in almost-

squared tiles assigned to each worker. The PBT is effec-

tively used to evaluate the load balance of each phase and,

eventually, to update tasks assignment in order to reduce



Figure 5: Scalability. Frame rates on increasing number of pro-

cessors comparing our adaptive subdivision (blue), a regular sub-

division (red) and the optimal linear speedup (green). ERW6-4 test

scene.

their completion time.

We have proved that our strategy shows a good scalabil-

ity, on a significant problem: Parallel Ray Tracing; it im-

proves on the same problem without load balancing. We re-

ported different measurements showing that the number of

tiles is a key point for the performances of the system. Our

proposed implementation is quite simple and leaves room

for further investigations.

Possible improvements of the system can be obtained

tweaking the PBT data structure. Our current implemen-

tation splits in halves unbalanced tiles; a fine grained split,

based on the estimations, may give better results. Another

possible extensions of our schema is to move toward a dis-

tributed PBT. This can also decrease the time required by

PBT-Update that currently is serial. Indeed, the state of the

art in load balancing [8, 3] has abandoned master-workers

paradigm preferring more scalable distributed load balanc-

ing schema.

Finally, it maybe worth interesting to integrate our PBT

based strategy with online approaches, like work-stealing:

the purpose is to verify that such strategies can get bene-

fit from a better load balancing (obtained by exploiting the

PBT) and, hence, introduce smaller overheads.

References

[1] P. Berenbrink, T. Friedetzky, and L. A. Goldberg. The nat-

ural work-stealing algorithm is stable. SIAM J. Comput.,

32(5):1260–1279, 2003.

[2] J. Bigler, A. Stephens, and S. Parker. Design for parallel

interactive ray tracing systems. IEEE Symposium on Inter-

active Ray Tracing, 0:187–196, 2006.

[3] R. D. Blumofe and C. E. Leiserson. Scheduling multi-

threaded computations by work stealing. Journal of ACM,

46(5):720–748, 1999.

[4] A. Chalmers and E. Reinhard, editors. Practical Parallel

Rendering. A. K. Peters, Ltd., Natick, MA, USA, 2002.
[5] J. Chapman, T. W. Calvert, and J. Dill. Exploiting tempo-

ral coherence in ray tracing. In Proceedings on Graphics

interface ’90, pages 196–204, Toronto, Canada, 1990.
[6] C. Chevrier. A view interpolation technique taking into ac-

count diffuse and specular inter-reflections. The Visual Com-

puter, 13(7):330–341, 1997.
[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.

Introduction to Algorithms, Second Edition. The MIT Press,

September 2001.
[8] D. E. DeMarle, C. P. Gribble, S. Boulos, and S. G. Parker.

Memory sharing for interactive ray tracing on clusters. Par-

allel Computing, 31(2):221–242, 2005.
[9] G. C. Fox, R. D. Williams, and P. C. Messina. Parallel Com-

puting Works! Morgan Kaufmann, May 1994.
[10] A. Grama, G. Karypis, V. Kumar, and A. Gupta. Introduc-

tion to Parallel Computing. Addison-Wesley Longman Pub-

lishing Co., Inc., Boston, MA, USA, 2002.
[11] K. Hwang and Z. Xu. Scalable Parallel Computing: Tech-

nology, Architecture, Programming. McGraw-Hill, 1998.
[12] Y.-K. Kwok and I. Ahmad. Benchmarking and comparison

of the task graph scheduling algorithms. Journal of Parallel

and Distributed Computing, 59(3):381–422, 1999.
[13] Message Passing Interface Forum. The Message Passing In-

terface (MPI) standard.
[14] J. Nagle. Rfc 896: Congestion control in ip/tcp interner-

works, 1984.
[15] D. M. Nicol and J. H. Saltz. Dynamic remapping of parallel

computations with varying resource demands. IEEE Trans-

action on Computer, 37(9):1073–1087, 1988.
[16] M. Parashar and J. Browne. Distributed dynamic data-

structures for parallel adaptive meshrefinement. In Proceed-

ings of the International Conference on High Performance

Computing, 1995.
[17] M. Parashar and J. C. Browne. On partitioning dynamic

adaptive grid hierarchies. In HICSS ’96: Proceedings of the

29th Hawaii International Conference on System Sciences

(HICSS’96) Volume 1: Software Technology and Architec-

ture. IEEE Computer Society, 1996.
[18] P. Shirley and R. K. Morley. Realistic Ray Tracing. A. K.

Peters, Ltd., Natick, MA, USA, 2003.
[19] J. Sig Badt. Two algorithms for taking advantage of tempo-

ral coherence in ray tracing. The Visual Computer, 4(3):123–

132, 1988.
[20] K. Suffern. Ray Tracing from the Ground Up. A. K. Peters,

Ltd., Natick, MA, USA, 2007.
[21] I. Wald, C. Benthin, A. Dietrich, and P. Slusallek. Inter-

active Distributed Ray Tracing on Commodity PC Clusters

– State of the Art and Practical Applications. In Proceed-

ings of EuroPar ’03, Lecture Notes on Computer Science,

2790:499–508, 2003.
[22] T. Whitted. An improved illumination model for shaded dis-

play. Communications of the ACM, 1980.
[23] L. Yang, J. M. Schopf, and I. Foster. Conservative schedul-

ing: Using predicted variance to improve scheduling de-

cisions in dynamic environments. In SC ’03: Proceed-

ings of the 2003 ACM/IEEE conference on Supercomputing,

page 31. IEEE Computer Society, 2003.


