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ABSTRACT
Over the past few years, the adoption of energy efficiency tech-
niques in modern computer systems is becoming increasingly rele-
vant for sustainable computing. A well-known power management
software technique for energy-efficient computing is frequency
scaling whichmodulates the device frequency to explore the energy-
performance trade-off. To achieve energy savings, a frequency tun-
ing phase is required because different applications can have dif-
ferent energy and runtime behaviors depending on the frequency
setting. Machine learning models can be used to predict energy and
runtime, and therefore optimal frequency configurations, based
on static or dynamic features extracted from the target applica-
tion. While general-purpose energy models can be very accurate
for a wide range of applications, their accuracy can be limited by
the specific input of the target application. We present an energy
characterization that spans the fields of drug discovery and mag-
netohydrodynamics by using two real-world applications as case
studies: LiGen and Cronos. Additionally, to overcome the limita-
tions of general-purpose approaches, we define two domain-specific
energy models, which enhance the general-purpose energy models
by leveraging the target application’s input parameter to increase
the final accuracy. Experimental results show that for both appli-
cations, domain-specific models achieve a ten times lower error
compared to the general-purpose energy models.
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1 INTRODUCTION
The 2030 Agenda for Sustainable Development [33] sets important
goals to improve the lives and prospects of all people, ranging from
critical health issues to sustainable industrialization and energy
efficiency. From a computational perspective, we are interested
in computational approaches that have a small energy footprint,
by providing full-stack measures to reduce the energy consump-
tion of modern computing systems; but we also look for those big
computational challenges that impact people’s lives.

Energy-efficient computing has been driving research in many
sectors, from engineering cooling systems to designing low-power
hardware architectures. Hardware characteristics can be exploited
by different techniques for reducing energy consumption through
the use of software interfaces: power-capping limits the hardware’s
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power over a time frame in order to achieve an overall power
budget; near-threshold voltage computing is focused on working at
lower voltages to increase energy efficiency [26]; Dynamic Voltage
and Frequency Scaling (DVFS) [25] is a technique that aims to
reduce power consumption by dynamically adjusting voltage and
frequency. In this work, we use DVFS to reduce energy consumption
in heterogeneous systems. Recent GPUs from AMD, Intel, and
NVIDIA provide APIs for monitoring and managing the power
state and changing the core frequency, i.e., ROCm SMI [2], Level
Zero [24], and NVML [34], respectively. The availability of such
energy capabilities paves the way for optimizations that focus not
only on performance but also on the energy consumption of a
GPU program. However, frequency scaling optimization requires
accurate energy models: we can only save energy if we know which
frequency configuration will give us a gain in energy consumption
with minimal or possibly no performance loss.

State-of-the-art energy models [6, 15, 20, 21, 30, 43] propose the
use of machine learning to predict the energy consumption of a
given program. However, these models are rather general-purpose
and may be inaccurate for some specific applications, in particular
for problems where the model inaccuracy is due to varying input
sizes. The key idea of this paper is that, if we target a specific
application, we can build a much more accurate energy model.
Therefore, we propose to move from a generic to a domain-specific
energy model for higher accuracy.

To validate our modeling approach, we consider two applica-
tions that have a large impact on sustainable development goals.
The first application is LiGen [3], a drug discovery platform by
Dompé Spa that uses the GPU to accelerate the docking and scor-
ing algorithm. LiGen is part of the EXSCALATE drug discovery
platform, which recently identified a generic osteoporosis drug as
an effective treatment for coronavirus [14]. The second application
is Cronos [28, 29], a hydrodynamics and magnetohydrodynamics
code developed primarily to solve various problems studied in the
field of astrophysical modeling, but with a solver that also supports
other conservation laws that can be provided by the user. Overall,
this paper makes the following contributions:
• An energy characterization of drug discovery and magneto-
hydrodynamics real-world applications on AMD MI100 and
NVIDIA V100;
• A methodology for building domain-specific energy models
capable of predicting both energy and runtime;
• A comparison of the domain-specificmodels against a general-
purpose state-of-the-art energy model on the two real-world
applications, i.e., LiGen and Cronos.

The rest of this paper is organized as follows. Section 2 describes
the motivations. Section 3 presents the energy characterization. Sec-
tion 4 describes the domain-specific energy modeling methodology.
Section 5 presents the experimental evaluation of our approach.
Section 6 and 7 conclude the paper with related work and final
conclusion.

2 MOTIVATION
In this section, we present an overview of how frequency scaling
works on modern GPUs, and the key insights and challenges in
applying frequency scaling to different applications and workloads.

We present two speedup-energy characterization results performed
on two applications running on an NVIDIA V100 GPU.

2.1 Saving Energy by Frequency Scaling
Dynamic Voltage Frequency Scaling (DVFS) allows for exploring
new opportunities in optimizing applications’ energy consumption.
While DVFS is able to significantly reduce the energy consumption
of a task, this typically comes at the cost of performance; therefore,
the problem is a multi-objective one, where we can explore different
tradeoffs. Previous work shows that this trade-off is not trivial, and
good energy savings can be achieved at the cost of a negligible loss
in performance [11]. As the search space of frequency configura-
tions can be very large, the typical approach is to highlight the
configurations that have a dominant energy-performance trade-
off. These “optimal” frequencies can be obtained by computing the
Pareto-optimal solutions. These solutions represent the boundary
of the set of all possible outcomes where no improvement can be
made in one objective without sacrificing the improvement of at
least one other objective. Particularly, in our case the Pareto fron-
tier would depict all the combinations of speedup and normalized
energy where no other combination can achieve higher speedup
without increasing the energy or reducing the energy without de-
creasing the speedup.

Heterogeneous systems are often programmed by using hetero-
geneous programming models such as OpenCL or SYCL, which
provide code portability to different platforms. DVFS, however, is
made available through different, vendor-specific, libraries such as
NVML for NVIDIA GPUs or ROCm SMI for AMD GPUs. As our
analysis is carried out on two SYCL-based applications, in this work
we used the SYnergy API [1, 12], which interfaces with vendor-
specific libraries from NVIDIA, AMD, and Intel GPUs and allows
for portable energy profiling and frequency scaling.

2.2 Energy Saving depends on the Application
Frequency scaling can have a very different impact on energy de-
pending on the type of application. For compute-bound applications,
we can have performance improvement at the cost of higher energy
consumption by increasing the core frequency. On the other hand,
memory-bound applications may benefit from core down-scaling
to reduce energy consumption with small performance degrada-
tion. Figure 1 shows how different core frequency configurations
can affect the speedup and energy of two real-world applications
LiGen (Figure 1a) and Cronos (Figure 1b). The baselines used for
computing the speedup and normalized energy are the time and
energy of the application executed with the default core frequency.
The percentage improvement or loss in speedup and normalized
energy due to frequency scaling are computed with respect to the
default frequency configuration.

In LiGen the core frequency can be raised to produce speedup
improvements of up to 25%. While, decreasing the core frequency
leads to smaller energy savings, up to 10%, at the expense of a 15%
loss in performance. For the Cronos application, by decreasing the
core frequency, we can achieve energy savings up to 22% with a
speedup loss close to 0%. While raising the core frequency increases
the energy consumption by 30% without providing any significant
improvement in performance. Due to the multi-objective nature
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(a) LiGen
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(b) Cronos

Figure 1: LiGen and Cronos multi-objective characterization.

of the problem, there is no single frequency that achieves at the
same time the best performance and energy consumption. How-
ever, using the Pareto-set we can explore the solutions that can
provide different trade-offs between speedup and energy. Through
this analysis, it is possible to choose a Pareto-optimal frequency
configuration according to the energy constraints of the specific
use case.

2.3 Energy Saving depends on the Workload
Exploring the trade-off between energy and speedup can be even
more challenging as the energy behavior of the same application
can be affected by the workload size.
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(a) Small input size
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(b) Large input size

Figure 2: LiGen multi-objective characterization with Pareto-
optimal solutions on input size of 2 ligands 𝑥 89 atoms 𝑥 8
fragments (a) and 10000 ligands 𝑥 89 atmos 𝑥 20 fragments
(b).

Figure 2 shows speedup and normalized energy consumption
for the LiGen application with an input size of 2 ligands 𝑥 89 atoms
𝑥 8 fragments and 10000 ligands 𝑥 89 atoms 𝑥 20 fragments. The
red line highlights the Pareto-optimal solutions.

In Figure 2a, we notice a speedup up to 20% by increasing the
core frequency while consuming 20% more energy. Differently,
decreasing the core frequency does not provide any energy savings.
For large input size Figure 2b, the energy behavior is the opposite.
By decreasing the core frequency, we can notice energy saving is
up to 10% with a speedup loss of 10%, while the same performance
improvement in Figure 2a comes with a 60% increase in energy
consumption.

Figure 3 shows the Pareto-optimal solutions for the Cronos ap-
plication with an input size of 20𝑥8𝑥8 and 160𝑥64𝑥64. For a small
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(a) Small input size

0.96 0.98 1.00 1.02
Speedup

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

No
rm

al
ize

d 
En

er
gy

default configuration
Pareto Front

600

800

1000

1200

1400

Co
re

 Fr
eq

ue
nc

y

(b) Large input size

Figure 3: Cronos multi-objective characterization with
Pareto-optimal solution on input size 20𝑥8𝑥8 (a) and
160𝑥64𝑥64 (b).

input size (Figure 3a) we notice a speedup up to 3% with a 10%
growth in energy consumption by increasing the core frequency.
Differently, decreasing the core frequency does not provide any
significant energy savings. For larger input sizes (Figure 3b), de-
creasing the core frequency allows for significant energy saving up
to 20%, while only losing 1% speedup. On the other hand, we have
no speedup improvement, but an increase in energy consumption
of up to 30% by increasing the core frequency.

Based on these observations, we build a more accurate domain-
specific multi-objective model that seeks to automatically predict
Pareto-optimal frequency configurations of a specific application
based on the input characteristics.

3 ENERGY CHARACTERIZATION OF TWO
REALWORLD APPLICATIONS

In this section, we provide an energy characterization of a magne-
tohydrodynamics code (Cronos) and a drug discovery framework
(LiGen) on a set of hardware composed of NVIDIA V100 and AMD
MI100 GPUs. As defined in Section 2.2 the percentage improvement
(or loss) in speedup and normalized energy are computed with
respect to the default frequency configuration.

3.1 Magnetohydrodynamics
Cronos [28, 29, 38] is a magnetohydrodynamics (MHD) code devel-
oped for the solution of plasma-dynamical problems in astrophysics
and space science. Algorithm 1 shows the structure of the Cronos
code. The pseudocode outlines a simplified version of the basic
structure of the Cronos application. The main computation hap-
pens in the function computeChanges, which computes the changes
that occur for every element of the grid, as well as the CFL (Courant-
Friedrichs-Lewy) value for every grid cell. This function represents
a 13-point stencil application, where all cells can be computed in
parallel. Due to the finite volume scheme involved, they need ac-
cess to their neighborhood of 2 cells in each direction, i.e. 4 cells
in each dimension. The next step in the algorithm is a reduction
using the max operation on the CFL values of each cell. This step is
parallelized using parallel reductions. After that the integrateTime
function applies the previously computed changes to the grid, up-
dating the state of every cell. This function is parallelized for every
cell in the grid. The last step of the main computational loop is to
update the boundary of the grid. This function only touches the
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outermost surfaces of the entire grid in parallel, rather than every
cell like in the previous steps. In every timestep, the timeDelta is
adjusted using the maximum cfl value which then advances the
simulation by one timestep. The whole simulation runs until a
preconfigured endTime is reached.

In our study, we explore how frequency scaling can affect the
trade-off between energy and speedup as the input size increases.

Algorithm 1: Cronos algorithm
1 𝑔𝑟𝑖𝑑 [𝑆𝐼𝑍𝐸_𝑍 ] [𝑆𝐼𝑍𝐸_𝑌 ] [𝑆𝐼𝑍𝐸_𝑋 ];
2 𝑔𝑟𝑖𝑑 ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑠𝑒 ();
3 𝑔𝑟𝑖𝑑 ← 𝑎𝑝𝑝𝑙𝑦𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 (𝑔𝑟𝑖𝑑);
4 while 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑖𝑚𝑒 ≤ 𝑒𝑛𝑑𝑇𝑖𝑚𝑒 do
5 for 𝑠𝑢𝑏𝑠𝑡𝑒𝑝 ← 0 to 2 do
6 𝑐ℎ𝑎𝑛𝑔𝑒𝐵𝑢𝑓 [𝑆𝐼𝑍𝐸_𝑍 ] [𝑆𝐼𝑍𝐸_𝑌 ] [𝑆𝐼𝑍𝐸_𝑋 ];
7 𝑐 𝑓 𝑙𝐵𝑢𝑓 [𝑆𝐼𝑍𝐸_𝑍 ] [𝑆𝐼𝑍𝐸_𝑌 ] [𝑆𝐼𝑍𝐸_𝑋 ];
8 𝑐 𝑓 𝑙𝐵𝑢𝑓 , 𝑐ℎ𝑎𝑛𝑔𝑒𝐵𝑢𝑓 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝐶ℎ𝑎𝑛𝑔𝑒𝑠 (𝑔𝑟𝑖𝑑);
9 𝑐 𝑓 𝑙 ← 𝑟𝑒𝑑𝑢𝑐𝑒 (𝑐 𝑓 𝑙, 𝑐 𝑓 𝑙𝐵𝑢𝑓 ,𝑚𝑎𝑥);

10 𝑔𝑟𝑖𝑑 ← 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑇𝑖𝑚𝑒 (𝑔𝑟𝑖𝑑, 𝑐ℎ𝑎𝑛𝑔𝑒𝐵𝑢𝑓 , 𝑠𝑢𝑏𝑠𝑡𝑒𝑝);
11 𝑔𝑟𝑖𝑑 ← 𝑎𝑝𝑝𝑙𝑦𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 (𝑔𝑟𝑖𝑑);
12 end
13 𝑡𝑖𝑚𝑒𝐷𝑒𝑙𝑡𝑎 ← 𝑎𝑑 𝑗𝑢𝑠𝑡𝑇𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝐷𝑒𝑙𝑡𝑎(𝑡𝑖𝑚𝑒𝐷𝑒𝑙𝑡𝑎, 𝑐 𝑓 𝑙);
14 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑖𝑚𝑒 += 𝑡𝑖𝑚𝑒𝐷𝑒𝑙𝑡𝑎;
15 end

3.1.1 Energy scalability on grid dimensions.
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(a) 10𝑥4𝑥4 grid size
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(b) 160𝑥64𝑥64 grid size

Figure 4: Cronos multi-objective characterization on NVIDIA
V100 with small (10𝑥4𝑥4) and large (160𝑥64𝑥64) grid size.

Figure 4 and 5 show the speedup and normalized energy of the
Cronos application executed on NVIDIA V100 and AMD MI100
GPUs with a small (10𝑥4𝑥4) and large (160𝑥64𝑥64) grid sizes. The
red line highlights the Pareto-optimal solutions. On NVIDIA V100
GPU (Figure 4a and 4b) for both small and large grids, increasing
the core frequency leads to higher energy consumption, up to 40%,
with respect to the default configuration, without any improvement
in performance. Energy-wise, as the grid size increases we can have
a higher chance of energy saving with a loss of speedup close to
0% by lowering the core frequency.

Figure 5a and 5b show the results on the AMD MI100 GPU.
AMD GPUs do not have a default frequency, but instead use a
performance level for dynamic frequency change. Normally the
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(a) 10𝑥4𝑥4 grid size

0.5 0.6 0.7 0.8 0.9 1.0
Speedup

0.6

0.7

0.8

0.9

1.0

No
rm

al
ize

d 
En

er
gy

AMD auto freq
Pareto Front

200

400

600

800

1000

1200

1400

Co
re

 Fr
eq

ue
nc

y

(b) 160𝑥64𝑥64 grid size

Figure 5: Cronos multi-objective characterization on AMD
MI100 with small (10𝑥4𝑥4) and large (160𝑥64𝑥64) grid size.

performance level is set to “automatic”, which is the configuration
that we consider as the default behavior of the GPU.We can see that
the default setting is very close to the higher achievable speedup,
but energy consumption can be reduced by lowering the frequency.
In particular, for small grid sizes, the achievable energy saving is
around 35% with a speedup loss of about 10%. On the other hand,
larger grid sizes have lower energy savings, with a difference of
about 5%, while the speedup loss remains the same as the small
input size.

3.2 Drug Discovery
LiGen is the molecular docking engine part of the EXSCALATE [14]
virtual screening platforms. It aims at finding the best drug candi-
dates to test in-vitro and in-vivo in a drug discovery process. In this
context, we have a target protein representing the disease and a very
large chemical library of ligands (small molecules) representing the
possible drugs. The platform’s goal is to rank the chemical library
according to the ligand-protein interaction strength to identify the
best candidates to forward to the next stages of drug discovery.
Algorithm 2 shows the two main tasks that allow to compute the
interaction strength. The first one is named dock, and it aims at
estimating the 3D displacement of the ligand’s atoms when it inter-
acts with the protein, i.e., dock the ligand inside the protein (lines
2-12). The second task is named score, and it aims at computing the
interaction strength of the ligand-protein pair (lines 13-18). LiGen
is the application that carries out these tasks. It provides the com-
putation kernel for different devices with the C++17, CUDA, and
SYCL implementations.

All the ligand-protein evaluations are independent. Thus, the
problem is embarrassing parallel. Moreover, the protein is a con-
stant for each virtual screening campaign. Thus, we can analyze
the algorithm complexity using features of the ligands. From the
asymptotic complexity analysis [14, 42], the complexity of the sin-
gle ligand-protein evaluation depends on the ligand’s number of
atoms and the number of rotamers. The latter is a subset of the
ligand’s bonds that LiGen can use to change its geometric shape
without altering physical and chemical properties. In particular,
each rotamer splits the ligand’s atoms into two disjoint sets that
can rotate independently along the rotamer axis. In this document,
we refer to each set as a ligand fragment.

In this section, we provide amulti-objective analysis highlighting
how frequency scaling can affect LiGen’s energy consumption and
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performance when given different numbers and types of ligands as
inputs.

Algorithm 2: LiGen virtual screening algorithm
Data: num_restart, num_iterations, max_num_poses
Input: ligand, target
Output: score

1 𝑠𝑐𝑜𝑟𝑒𝑠 ← ∅, 𝑝𝑜𝑠𝑒𝑠 ← ∅;
2 for 𝑖 ← 0 to 𝑛𝑢𝑚_𝑟𝑒𝑠𝑡𝑎𝑟𝑡 do
3 𝑝𝑜𝑠𝑒 ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒_𝑝𝑜𝑠𝑒 (𝑙𝑖𝑔𝑎𝑛𝑑, 𝑖);
4 𝑝𝑜𝑠𝑒 ← 𝑎𝑙𝑖𝑔𝑛(𝑝𝑜𝑠𝑒, 𝑡𝑎𝑟𝑔𝑒𝑡);
5 for 𝑛 ← 0 to 𝑛𝑢𝑚_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do
6 for 𝑓 𝑟𝑎𝑔𝑚𝑒𝑛𝑡 ← 𝑝𝑜𝑠𝑒.𝑓 𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠 do
7 𝑝𝑜𝑠𝑒 ← 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒 (𝑝𝑜𝑠𝑒, 𝑓 𝑟𝑎𝑔𝑚𝑒𝑛𝑡, 𝑡𝑎𝑟𝑔𝑒𝑡);
8 end
9 end

10 𝑝𝑜𝑠𝑒 ← 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 (𝑝𝑜𝑠𝑒, 𝑡𝑎𝑟𝑔𝑒𝑡);
11 𝑝𝑜𝑠𝑒𝑠 ← 𝑝𝑜𝑠𝑒𝑠 ∪ 𝑝𝑜𝑠𝑒;
12 end
13 𝑝𝑜𝑠𝑒𝑠 ← 𝑐𝑙𝑖𝑝 (𝑠𝑜𝑟𝑡 (𝑝𝑜𝑠𝑒𝑠),𝑚𝑎𝑥_𝑛𝑢𝑚_𝑝𝑜𝑠𝑒𝑠);
14 for 𝑝𝑜𝑠𝑒 ← 𝑝𝑜𝑠𝑒𝑠 do
15 𝑠𝑐𝑜𝑟𝑒 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑠𝑐𝑜𝑟𝑒 (𝑝𝑜𝑠𝑒, 𝑡𝑎𝑟𝑔𝑒𝑡);
16 𝑠𝑐𝑜𝑟𝑒𝑠 ← 𝑠𝑐𝑜𝑟𝑒𝑠 ∪ 𝑠𝑐𝑜𝑟𝑒;
17 end
18 return𝑚𝑎𝑥 (𝑠𝑐𝑜𝑟𝑒𝑠)

3.2.1 Energy scalability on atoms and fragments.
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Figure 6: LiGen multi-objective characterization on NVIDIA
V100 scaling the number of fragments with a fixed number
of atoms.

For this analysis, we use raw values instead of normalized values
to avoid an overlap of the energy curves and have a better visu-
alization of the data as the input size increases. Figure 6 shows
the energy and time behavior of the LiGen application running
on NVIDIA V100 GPU with 100000 ligands. Each ligand is com-
posed of a small (Figure 6a) and a large number of atoms (Figure
6b) while varying the number of fragments. As the number of frag-
ments increases, both the energy consumption and time increase.
In particular, this behavior is more evident with a large number of
atoms.
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Figure 7: LiGen multi-objective characterization on AMD
MI100 scaling the number of fragments (4, 8, 16, 20) with a
fixed atom size.

Figure 7 shows the results using the same experiments performed
in Figure 6 on an AMDMI100 GPU. As with the NVIDIA V100 GPU,
increasing the number of fragments produces an increase in energy
consumption and time. Additionally, on AMDMI100we can observe
greater energy consumption variations with a large atom size, as
the number of fragments increases. Compared with the NVIDIA
V100 results, both energy and time are higher on AMD MI100.
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Figure 8: LiGen multi-objective characterization on NVIDIA
V100 scaling the number of atoms (31, 63, 74, 89) with a fixed
fragment size.

In Figure 8 we explore the energy and time behavior of LiGen
with a fixed number of fragments while increasing the number of
atoms in the ligands (Figure 8a and Figure 8b). By only increasing
the number of atoms, we can notice more variability in energy
consumption with respect to Figure 6.
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Figure 9: LiGen multi-objective characterization on AMD
MI100 scaling the number of atoms (31, 63, 74, 89) with a
fixed fragment size.
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The same experiments with a fixed fragment size have been
reproduced on the AMD MI100 GPU, showing a similar behavior
that can be seen in Figure 9.

3.2.2 Energy scalability on number of ligands.
All the computation performed during the docking and scoring
phases of LiGen can be easily parallelized by allowing each kernel
on the GPU to compute several ligands simultaneously. By scaling
the number of ligands computed in a kernel, wemay have a different
utilization of the GPU resources that may affect the energy behavior
of the whole application.
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Figure 10: LiGen multi-objective characterization on NVIDIA
V100 and AMDMI100 with small (256 ligands 𝑥 31 atoms 𝑥
4 frag.) and large (10000 ligands 𝑥 89 atoms 𝑥 20 frag.) input
size.

Figure 10 shows the speedup and normalized energy with the
Pareto-optimal solutions of the LiGen application on a set of small
and large ligands. On NVIDIA V100 (Figure 10a and Figure 10b)
we may have a speedup up to 22% with an energy consumption
increase of 60% by using a large input size. Differently, on small
input sizes, the achieved speedup is lower, up to 15%, while the
energy consumed is 30% compared to the 60% on large input sizes.
Furthermore, on small input, we have more chance of saving energy.
Looking at the Pareto-optimal solutions on the red line we can select
some frequency configurations that provide a 10% of energy saving
with a speedup loss of 5%. For the AMDMI100 GPU (Figure 10c and
Figure 10d), the normalized energy and speedup are computed with
respect to the frequency automatically selected by the GPU. This
frequency always performs better on both small and large inputs.
The Pareto-optimal solutions highlight an energy behavior similar
to the results on NVIDIA V100. With small input sizes, we can
select Pareto-optimal frequency configurations that achieve 20%
energy saving with a speedup loss of 10%. While for large inputs
the same energy saving comes at the cost of higher speedup loss.

4 DOMAIN-SPECIFIC ENERGY MODELING
4.1 General-purpose Energy Modeling
To optimize the energy efficiency brought by GPU DVFS, many ex-
isting models generally adopted learning-based methods to identify
kernel patterns and estimate the effects of DVFS on energy con-
sumption. In particular, Fan et al. [11] proposed a machine-learning
model to optimize energy consumption statically by taking DVFS
into account on GPUs. The model is based on typical two-phase
modeling with supervised learning: training phase and prediction
phase. In the training phase, Fan et al. first build 106 carefully-
designed micro-benchmarks and extract a set of static features
of each micro-benchmark. Successively, each micro-benchmark is
executed with various frequency configurations to obtain energy
measurements. Those measurements, together with frequency con-
figurations and static features, are used to train the normalized
energy consumption model. All the micro-benchmarks are built to
stress one or more features that characterize the device’s energy
consumption and they can be used to train a general-purpose model
that works on different applications. In the prediction phase, static
code features are extracted from a new input code. Those features,
combined with frequency configurations and the previously trained
models, are used to predict the normalized energy consumption of
a new code.

The approach, proposed by Fan et al., takes advantage of static
code features to predict the normalized energy consumption of a
new code without executing it. However, the static code features
have more weight on computing ability, which leads to a higher
prediction accuracy of compute-bound applications and lower pre-
diction accuracy of memory-bound applications.

4.2 Towards Domain-specific Modeling
As demonstrated in Section 3 the energy behavior of real-world
applications may depend on the input characteristics. State-of-the-
art general-purpose models only consider static features without
taking into account how the application can be affected by different
workloads and input types. To improve the accuracy of general-
purpose models we provide two domain-specific energy models
that rely on the input characteristics of a program to predict the
speedup and normalized energy for each device core frequencies.

The methodology used for modeling is based on supervised
learning, in which each model is built during the training phase
using domain-specific features. Then, the prediction phase takes
unseen features as input and generates execution time and energy
consumption, which are used to compute speedup and normalized
energy for each frequency configuration of the target hardware.
Table 1 shows the features used in the general-purpose model.

4.2.1 Features selection.
The domain-specific nature of the models implies that there is not
a said set of features for every application, but rather, for each
application different features must be chosen through an in-depth
time and energy analysis. In our case, the Cronos and LiGen models
are built on top of the energy characterization analysis in Section 3,
which provides interesting insights to select the features that best
represent the energy characterization of the target application.
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Table 1: General-purpose model features.

Feature Description
𝑓𝑖𝑛𝑡_𝑎𝑑𝑑 integer additions and subtractions
𝑓𝑖𝑛𝑡_𝑚𝑢𝑙 integer multiplications
𝑓𝑖𝑛𝑡_𝑑𝑖𝑣 integer divisions
𝑓𝑖𝑛𝑡_𝑏𝑤 integer bitwise operations
𝑓𝑓 𝑙𝑜𝑎𝑡_𝑎𝑑𝑑 floating point additions and subtractions
𝑓𝑓 𝑙𝑜𝑎𝑡_𝑚𝑢𝑙 floating point multiplications
𝑓𝑓 𝑙𝑜𝑎𝑡_𝑑𝑖𝑣 floating point divisions
𝑓𝑠 𝑓 special functions
𝑓𝑔𝑙_𝑎𝑐𝑐𝑒𝑠𝑠 global memory accesses
𝑓𝑙𝑜𝑐_𝑎𝑐𝑐𝑒𝑠𝑠 local memory accesses

Magnetohydrodynamics. The characterization in Figure 4 and
5 shows that the Cronos application exhibits different behaviors
when considering varying grid sizes. For this reason, we model the
behavior of the application through the use of the grid size on the
x,y, and z-axis.

Drug discovery. As expected, the energy consumed by the LiGen
application increases as the number of ligands increases (Figure
10). Furthermore, Figure 6 and 8 show that the LiGen energy and
time are strictly related to the structure of the ligands, e.g., the
number of fragments and atoms in each ligand. To fully capture
all these aspects, our domain-specific models use the number of
ligands, fragments, and atoms as features.

The final features for the two applications are summarized in
Table 2.

Table 2: Domain-specific model features.

Application Features
Cronos 𝑓𝑔𝑟𝑖𝑑_𝑥 , 𝑓𝑔𝑟𝑖𝑑_𝑦, 𝑓𝑔𝑟𝑖𝑑_𝑧
LiGen 𝑓𝑙𝑖𝑔𝑎𝑛𝑑𝑠 , 𝑓𝑓 𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠 , 𝑓𝑎𝑡𝑜𝑚𝑠

4.2.2 Training phase.
The workflow of the training phase is illustrated in Figure 11. For
each application, the outputs of this phase are two models: one for
execution time and one for energy consumption. In order to build
the training set, the models require both the input features ®𝑓 and
the ground truth values for the execution time (𝑡 ) and energy con-
sumption (𝑒) of the application. Furthermore, as we must capture
the behavior of the application (1) with different frequencies, each
input must be executed for each (or a part) of the frequency con-
figuration (𝑐) of the target hardware (2). Once the training dataset
𝐷 = {𝑠 : 𝑠 = ( ®𝑓 , 𝑐, 𝑡, 𝑒)} is built (3), we apply different machine
learning algorithms to build the two models 𝑇 ( ®𝑓 , 𝑐) for execution
time (4) and 𝐸 ( ®𝑓 , 𝑐) for energy consumption (5).

Frequency 
Configurations

Domain-specific 
Features

SYCL
LiGen

SYCL
Cronos

Execution with 
SYnergy API

(4)(1)

(2)
Energy 
Model

Time
ModelTime and 

Energy 
measurements

(3)

(5)

Figure 11: Domain-specific model training phase

4.2.3 Prediction phase.
The workflow of the prediction phase is presented in Figure 12.
During the prediction phase, given a new features vector ®𝑓 ′ (1) and
a frequency configuration 𝑐′ (2), the models are used to predict
𝑡 = 𝑇 ( ®𝑓 ′, 𝑐′) and 𝑒 = 𝐸 ( ®𝑓 ′, 𝑐′). Once the energy and time predic-
tions for all frequency configurations are available, the predicted
speedup (3) and normalized energy (4) can be computed, taking as
a baseline the predicted values for the default frequency configura-
tion. Finally, speedup and normalized energy are used to select the
Pareto-optimal solutions.
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(2)

(1)

Energy 
Model

Time
Model
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(3)

Predicted 
Speedup

Predicted 
Normalized 

Energy

Figure 12: Domain-specific model prediction phase

5 EXPERIMENTAL EVALUATION
In this section, we present the experimental evaluation of the pro-
posed models, along with a comparison with the state-of-the-art
model that is based on static code features.

5.1 Experimental Setup
The models’ training dataset is obtained by launching the appli-
cation on a system using Ubuntu 22.04, an Intel Xeon Gold 5218
CPU, and an NVIDIA V100 GPU with 32 GB of High Bandwidth
Memory (HBM2). The NVIDIA driver version and CUDA version
are respectively 530.30.02 and 12.1. The V100 GPU supports one
memory frequency (1107 MHz) and 196 core frequencies from
135 MHz to 1597 MHz. The execution time is profiled through
the standard C++ library, while the energy consumption is pro-
filed through the SYnergy API. Each experiment is repeated five
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times to reduce the impact of any outliers. We launched the two
applications, Cronos and LiGen, with many different inputs. For
Cronos, we use five grid configurations, starting from a 10𝑥4𝑥4
grid up to a 160𝑥64𝑥64 grid. LiGen experiments are executed on
different numbers of ligands that have varying numbers of frag-
ments and atoms. Each experiment can be represented by a tuple
(𝑙, 𝑎, 𝑓 ) ∈ {2, 16, 1024, 4096, 10000} × {31, 63, 71, 89} × {4, 8, 16, 20},
where 𝑙 is the number of ligands, 𝑎 is the number of atoms and 𝑓 is
the number of fragments. To validate our approach the applications
were executed with all the frequencies of the V100 GPU and then
we highlighted the point predicted by the general-purpose model
and domain-specific model.

5.2 Domain-specific versus General-purpose
Models Accuracy

The general-purpose models are built using a set of well-defined
micro-benchmarks that stress different architectural components of
the target hardware [11, 20]. Then, the prediction phase for general-
purpose models uses the static code features of the application to
predict the energy and execution time values.

Differently, the presented domain-specific models are trained
on a specific application and are meant to be used for that same
application. Thus, we validate these models by using leave-one-
out cross-validation over the domain-specific features dataset as
defined in Table 2. Specifically, for each different input feature ®𝑓
we build a set 𝐷𝑣 for validation and a set 𝐷𝑡 for training, defined
as follows:

𝐷𝑣 = {𝑠 ∈ 𝐷 : 𝑠 has input features ®𝑓 }
𝐷𝑡 = 𝐷 \ 𝐷𝑣

where 𝑠 = ( ®𝑓 , 𝑐, 𝑡, 𝑒) as defined in Section 4.2.2.

5.2.1 Accuracy of Speedup and Normalized Energy predictions.
Our approach is built on top of two models: one is to predict
speedup and the other is to predict normalized energy. Through
the scikit-learn Python library, we perform the training phase of
these models using different kinds of regression algorithms (Linear,
Lasso, SVR_RBF, Random Forest) and finally select the algorithm
that achieves the highest accuracy for each model. Random Forest
achieves the maximum accuracy for both normalized energy and
speedup models. We performed a hyperparameter tuning of the
Random Forest regression algorithm through a grid search method.
The grid space has been defined by three parameters: the maximum
depth of the tree (max_depth); the number of trees in the forest
(n_estimators); the number of features to consider when looking
for the best split (max_features). As a result, the default parameter
performs better for both the speedup and energy models. The ac-
curacy comparison is based on the analysis of the mean absolute
percentage error (MAPE) of the models. For each application, we
first compute the absolute percentage error between the predicted
values by the two models and the true values obtained through
running the application with each frequency configuration. Then,
we measure the prediction accuracy as the mean of the absolute
percentage error over all the frequency configurations. Figure 13
shows the speedup and normalized energy prediction accuracy of
the two models expressed as MAPE for both applications Cronos

and LiGen on different input workloads. The domain-specific mod-
els achieve a lower error for both applications on every input and
are at least 10 times more accurate than the general-purpose model.

5.2.2 Accuracy of Predicted Pareto Set.
The final purpose of the models is to predict Pareto-optimal fre-
quency configurations that allow for energy saving or a boost in
performance. In the accuracy analysis, the general-purpose and
domain-specific models are both used to predict the execution time
and the energy consumption for each frequency configuration.
Then to obtain the Pareto-optimal frequency configurations, we

(1) compute the predicted speedup and normalized energy, using
the predicted values of the default frequency configuration
as baseline;

(2) compute the predicted Pareto-optimal solutions;
(3) create the Pareto-optimal frequency configuration set by

selecting the frequency configurations associated with each
predicted Pareto-optimal solution.

This process produces two sets of predicted Pareto-optimal fre-
quency configurations, one for the general-purpose models and one
for the domain-specific ones, that are comparable with the actual
Pareto-optimal frequency configuration.

To assess the models’ accuracy we use the speedup and normal-
ized energy obtained running the applications with the predicted
Pareto-optimal frequency configurations. In fact, these are the real
values that would be obtained if the applications were executed
with the predicted Pareto-optimal frequencies. Analyzing the accu-
racy of the predicted Pareto-optimal solutions is not trivial as the
actual points obtained by the predicted Pareto-optimal frequency
configurations are not for sure Pareto-optimal. In general, a better
Pareto approximation is a set of solutions that, in terms of speedup
and normalized energy, is the closest to the real Pareto-optimal one.
Moreover, the number of predicted Pareto-optimal frequency con-
figurations that exactly match the true Pareto-optimal frequency
configurations can be considered as a metric when comparing ac-
curacy between models.
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Figure 14: LiGen and Cronos Pareto-optimal solution pre-
dicted by the general-purpose and domain-specific models
compared with the true Pareto-set (red line)

Figure 14 shows the predicted Pareto-optimal solutions for the
LiGen and Cronos on the same input of Figure 10b and 4b. The
red line represents the true Pareto-optimal configurations, while
the gray squares and the blue crosses represent respectively the
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(b) Cronos normalized energy prediction error

31
x4

x2
56

31
x4

x4
09

6

31
x4

x1
00

00

31
x2

0x
25

6

31
x2

0x
40

96

31
x2

0x
10

00
0

89
x4

x2
56

89
x4

x4
09

6

89
x4

x1
00

00

89
x2

0x
25

6

89
x2

0x
40

96

89
x2

0x
10

00
0

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

M
ea

n 
Ab

so
lu

te
 P

er
ce

nt
ag

e 
Er

ro
r

0.006
0.016 0.022

0.005 0.008 0.011 0.008
0.015 0.013 0.011 0.014 0.015

general-purpose model
domain-specific model

(c) LiGen speedup prediction error
31

x4
x2

56

31
x4

x4
09

6

31
x4

x1
00

00

31
x2

0x
25

6

31
x2

0x
40

96

31
x2

0x
10

00
0

89
x4

x2
56

89
x4

x4
09

6

89
x4

x1
00

00

89
x2

0x
25

6

89
x2

0x
40

96

89
x2

0x
10

00
0

0.00

0.05

0.10

0.15

0.20

0.25

M
ea

n 
Ab

so
lu

te
 P

er
ce

nt
ag

e 
Er

ro
r

0.009 0.008 0.008 0.008 0.009 0.008 0.008 0.008 0.009 0.008 0.008 0.009

general-purpose model
domain-specific model

(d) LiGen normalized energy prediction error

Figure 13: Comparison of prediction accuracy for Cronos and LiGen using the general-purpose and domain-specific models.

Pareto-optimal solutions predicted by the general-purpose and
the domain-specific models. The predicted frequency configura-
tions of the general-purpose model for LiGen fully match the true
Pareto set, while the domain-specific model predicts a configu-
ration that is not in the true Pareto set. On the other hand, the
domain-specific model predicts more Pareto-optimal points than
the general-purpose model. This is a positive trait of the model, as
it allows us to explore deeply the trade-off between speedup and
normalized energy. For example, in Figure 14a only the domain-
specific model is able to predict the highest-performing frequencies
achieving around 23% of speedup compared to the 18% speedup
obtained by using the general-purpose model prediction. For the
Cronos application, the general-purpose and the domain-specific
models have more difficulty in predicting the speedup as the val-
ues are very close to each other. Therefore, differently from LiGen,
both models predict fewer frequency configurations that exactly
match the true Pareto-optimal configurations. With respect to en-
ergy, the domain-specific model is more precise in the prediction
of frequency configurations that correspond to normalized energy
values in line with the true Pareto-optimal solutions.

6 RELATEDWORK
The energy sustainability of modern HPC systems is a critical con-
cern from both an economic and an ecological standpoint. For
this reason, many efforts in the scientific community are directed
toward the development of tools that can contribute to reducing
the environmental footprint of HPC systems. In particular, in re-
cent years, many studies on modeling the energy consumption of
scientific applications running on large-scale clusters have been
published, enabling researchers to identify new strategies to re-
duce their energy consumption [6, 15, 20, 21, 30, 43]. Among them,
Lopes et al. [30] proposed a model that relies on extensive GPU
micro-benchmarking using a cache-aware roofline model. Wu et
al. [43] studied the performance and energy models of an AMD
GPU by using K-means clustering. Guerreiro et al. [20] made more
improvements: they not only presented the approach of gather-
ing performance events by micro-benchmarks in detail but also
predicted how the GPU voltage scales.

Such methods are often based on power limitation or frequency
modulation of computing systems. In terms of power limitation,
Remesh et al. [36] modeled the impact of dynamic power capping
schemes in progress for a set of online HPC applications. Hao et
al. [23] combined the powercap with uncore frequency scaling
and proposed a machine learning modeling to predict the Pareto-
optimal powercap configurations for achieving trade-offs among
performance and energy consumption. In terms of frequency mod-
ulation, Ge et al. [16] applied fine-grained GPU core frequency and
coarse-grained GPU memory frequency on a Kepler K20c GPU, but
only analyzed three compute-intensive benchmarks to study the
impact of GPU DVFS.

However, additional challenges and opportunities arise when
these tools must be integrated into existing systems using workload
managers [22, 39, 45, 46]. Furthermore, most of the above energy
models are proposed for general purposes, which may lead to lower
prediction accuracy of energy consumption targeting specific appli-
cations. Our proposal, starting from those challenges, specifically
targets drug discovery and magneto-hydrodynamics applications
and outperforms the general-purpose energy model.

Other works propose tools to dynamically modulate frequency or
adjust the job’s power cap by analyzing features of the application at
run-time [7, 10]. These tools lack an easily portable approach, either
because designed for specific hardware or because they require
a custom implementation in order to support different kinds of
architectures. Differently, our approach provides a model-based
and architecture-independent solution that only requires the range
of frequency configuration to work on any architecture. Also, this
solution can be easily integrated into other existing toolchains to
drive the frequency selection of Pareto-optimal solutions.

Drug discovery in HPC. How to dock a ligand inside a protein and
how to estimate their interaction strength are well-known problems
in the literature that we need to solve for different purposes [5, 41].
Indeed, we can find a wide range of software that can dock and
score, covering the accuracy-performance spectrum [4, 32, 35, 44].
In this work, we focus on virtual screening, the initial stage of drug
discovery that suggests which molecules to test in-vitro and in-vivo.
Recent studies demonstrated how the introduction of this stage
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increases the success probability of the drug discovery pipeline
[17]. Since this problem is embarrassingly parallel and the chemical
space is huge, the size of the chemical library that we need to vir-
tual screen is constrained only by the available computation effort.
Recently, the largest campaigns of virtual screening performed bil-
lions [18] and a trillion [14] of protein-ligand evaluations against
SARS-CoV-2. The latter used LiGen to carry out the dock and score
computation, using almost all the nodes of two supercomputers
(HPC5 at ENI and MARCONI100 at CINECA).

Cronos code for Astrophysical Magnetohydrodynamics. The use of
numerical methods is common in the field of astrophysics, to com-
plement real behaviors observed in experiments with simulations.
There is a wide range of applications developed for solving prob-
lems in hydrodynamics or magnetohydrodynamics, such as Racoon
[9], Ramses [13], Nirvana [47], Amrvac [27, 40], Athena [37], Pluto
[31], WENO–WOMBAT [8], each developed with a particular prob-
lem focus. The Cronos code [28, 29], instead, was developed so that
it could easily adapt to the various problems investigated in the
field of astrophysical modeling. In addition, the code also allows the
solver to be used for other conservation laws that can be provided
by the user. Recently, the Cronos code related to the solver has been
ported to the SYCL [19] and Celerity [38] programming models to
run on a single node and a distributed memory cluster, respectively.

7 CONCLUSION AND FUTUREWORKS
To address the energy sustainability challenges, we build domain-
specific energy models capable of predicting Pareto-optimal fre-
quency configurations by combining frequency scaling with a
machine-learning approach. As a preliminary investigation to build
domain-specific models, we perform an energy evaluation of two
real-world applications, LiGen and Cronos, on an AMD MI100 and
an NVIDIA V100, demonstrating how differing workloads can sig-
nificantly impact the energy behavior of both applications. Based
on it, we provide a methodology to build domain-specific models
capable of predicting the Pareto-optimal frequency configurations
by leveraging the input characteristics of the target application
instead of static code features. Finally, we validate the accuracy
of our methodology by comparing the speedup and normalized
energy prediction of the LiGen and Cronos models with the general
purpose model and the actual values. In addition, we provide a
more detailed analysis based on the comparison of Pareto optimal
solutions. The results show that domain-specific models have at
least a ten times lower error than the general-purpose approach.
Moreover, the Pareto set comparison highlights that the domain-
specific approach allows a better exploration of the speedup-energy
trade-off, as it predicts more solutions on the true Pareto set. As
future work these models can be easily integrated into the SYnergy
compilation toolchain [12] by replacing the general-purpose SYn-
ergy model with our domain-specific model. In this way, we can
use the energy target metric defined in SYnergy to select a specific
frequency configuration that fits the defined energy target. Addi-
tionally, using SYnergy’s support for per-kernel frequency scaling,
we can use the domain-specific model to select a different frequency
configuration for each kernel of the application by focusing on each
kernel’s input rather than the input for the entire program.
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