
A Performance Analysis of Autovectorization
on RVV RISC-V Boards

Lorenzo Carpentieri
Department of Computer Science

University of Salerno, Italy

Mohammad VazirPanah
Department of Computer Science

University of Salerno, Italy

Biagio Cosenza
Department of Computer Science

University of Salerno, Italy

Abstract—The RISC-V instruction set architecture has become
increasingly popular due to its open source and extensible design,
making it a competitive choice in high-performance computing
and embedded systems. The RISC-V Vector extension (RVV)
empowers RISC-V processors with length-agnostic vectorization
capabilities, a critical feature for efficiently handling parallel
processing demands across different hardware. Compiler support
for autovectorization allows to generate vector instructions au-
tomatically without requiring any effort to programmers. Given
the limited yet evolving compiler support for RVV, this paper
offers an in-depth examination of autovectorization capabilities in
GCC and LLVM, for RVV version 0.7 and 1.0. We evaluated the
autovectorization performance of LLVM, LLVM-EPI and GCC
compilers across 151 loops from the Test Suite for Vectorizing
Compilers (TSVC) ans seven real-world applications on the All-
Winner D1 and BananaPi-F3 boards, representing RISC-V vector
hardware. Our study focuses on quantifying and comparing the
level of vectorization each compiler achieves across a diverse
range of vectorization patterns and workloads, providing insight
into their strengths and limitations with respect to RISC-V RVV.
Our findings highlight that the LLVM-19 compiler outperforms
GCC-14 in 76 out of 151 loops, and its performance is more
sensitive to the selection of vector length. Additionally, tuning
the vector Length Multiplier (LMUL) parameter can lead to
performance improvements of up to 3x, and leveraging knowledge
of the vector length can further enhance LMUL optimization in
compilers.

Index Terms—Autovectorization, RISC-V, RISC-V Vector Ex-
tension, RVV

I. INTRODUCTION

RISC-V is an open-standard Instruction Set Architecture
(ISA) [1] that has gained significant attention in recent years
due to its modular, extensible, and open-source design. RISC-
V is built on the principles of Reduced Instruction Set
Computing (RISC), offering a streamlined and flexible base
architecture that can be extended with a variety of optional
features. This flexibility has made RISC-V a popular choice
in academia, research, and industry, driving innovations across
a wide spectrum of computing applications—from embedded
systems to High-Performance Computing (HPC). One of the
key extensions of the RISC-V ISA is the RISC-V Vec-
tor Extension (RVV), designed to enhance the architecture’s
capabilities in parallel data processing. RVV supports both
Vector Length Agnostic (VLA) and Vector Length Specific
(VLS) programming models, allowing developers to write
code that adapts to varying vector lengths [2]. This flexibility
enhances the potential for performance gains across a wide

range of applications, especially in HPC. While vectorization
has become an essential optimization technique, compilers
still face limitations in fully leveraging these opportunities on
RISC-V architectures [3]. This is largely because compilers
struggle to capture key context from the code, which limits
their ability to perform effective autovectorization. This chal-
lenge is particularly relevant in the case of RISC-V with its
RVV, where effective autovectorization could enhance com-
putational performance [4]. Understanding how VLA and VLS
programming models influence autovectorization on RISC-V
can provide valuable insights for maximizing the utility of the
RVV.

This study examines the autovectorization capabilities of
two widely-used compilers—GCC and LLVM—with a focus
of RISC-V RVV versions 0.7 and 1.0. Although RVV 1.0-
compatible hardware has only recently become available,
much of the current RISC-V hardware still supports the earlier
RVV 0.7 version [5]. However, the latest compilers offer
limited support for RVV 0.7, which constrains optimization
on older hardware. Additionally, most of the existing research
in this area has relied on simulations rather than real hardware
evaluations, which limits the practical applicability of their
findings [3]. To address this gap, our study utilizes real RISC-
V RVV boards for testing, providing an analysis of compiler
support and performance across both RVV versions.

By investigating how GCC and LLVM exploit RVV features
to generate autovectorized code, we identify each compiler’s
strengths and limitations with both RVV 0.7 and 1.0. Our
findings reveal the current state of RISC-V compiler support
for autovectorization. The insights gained from this study
are intended to guide future efforts in optimizing compiler
capabilities for RISC-V, facilitating better performance across
a broader spectrum of applications. The key contributions of
this paper are as follows:

• Pattern-Based Analysis of TSVC Loops on RISC-V
Vector Boards: We explore the autovectorization capa-
bilities of LLVM, LLVM-EPI and GCC compilers across
various versions on real RISC-V RVV hardware. This
analysis focuses on how these compilers automatically
generate vectorized code compliant with RVV 1.0 and
0.7 specification.

• Evaluation of Autovectorization in Real-World Appli-
cations: We evaluate the autovectorization performance
of LLVM, LLVM-EPI and GCC compilers across six



real-world applications, tested on the AllWinner D1 and
BananaPi-F3 RISC-V RVV boards.

• Performance Optimization Through VLA, VLS, and
with LMUL Tuning: We highlight the performance
impact of using VLA and VLS and optimizes vector
Length Multiplier (LMUL) settings for various vectoriza-
tion patterns. Furthermore, we show how the knowledge
of vector length can affect the selection of LMUL.

II. RISC-V ARCHITECTURE

RISC-V is an open-standard ISA developed to emphasize
simplicity, flexibility, and modularity. One of the key strengths
of RISC-V is optional extensions that can be added depending
on the specific needs of the hardware or application. These
extensions include support for single and double precision
operations (F and D), atomic instructions (A), and, more
recently, vector processing (V ). Among these extensions, the
RISC-V Vector Extension stands out as a critical advancement,
designed to enhance data-parallel processing by allowing the
execution of vectorized operations, as discussed in the follow-
ing section.

A. RISC-V Vector Extension (RVV)

The RVV enables instructions to be applied to multiple
data elements simultaneously, improving parallel processing
capabilities. It defines a set of 32 vector registers that are each
VLEN bits wide, where VLEN is a power-of-two greater than
or equal to 128 (in the standard V extension). Vector registers
can be interpreted as multiple 8/16/32/64 bit elements, and
operated on accordingly as signed/unsigned integers or sin-
gle/double precision floating point numbers depending on the
hardware support. The RVV extension also includes control
registers to configure the Standard Element Width (SEW) to
determine the number of elements per vector, the Vector
Length (VL), which defines the active vector length, and the
LMUL to group registers for forming ”longer vectors”. A
notable advantage of the RVV extension is the support for both
Vector-Length Specific (VLS) and Vector-Length Agnostic
(VLA), making it adaptable to a wide range of hardware
configurations and efficiently utilizing available resources. The
RVV specification has evolved through different versions, from
version 0.7 to the ratified version 1.0, each enhancing its
capabilities.

1) RVV 0.7: The 0.7 version of the RISC-V RVV was an
early draft that introduced key concepts such as VLA execu-
tion, allowing instructions to operate on vectors of varying
lengths based on hardware. However, many modern compilers
no longer support RVV 0.7. Legacy compilers such as GCC
8.4, GCC 10.2, and LLVM-EPI are compatible with this
version [5], while newer compilers focus on supporting the
stable, ratified RVV 1.0.

2) RVV 1.0: This is the first official and stable release of
the vector extension, building on the concepts introduced in
version 0.7 with further refinements and optimizations. Version
1.0 introduces various changes in the vector instructions,
resulting in binary incompatibility with the previous version.

The major change relevant for performance is related to the
support of fractional LMUL which reduces the number of bits
used in a vector register. Fractional LMUL is used to increase
the number of usable architectural registers when operating on
mixed-width values by not requiring that larger-width vectors
occupy multiple vector registers.

Modern compilers, including the latest versions of GCC and
LLVM, generate code compliant with RVV 1.0 specification
offering support for both manual vectorization through intrin-
sics and autovectorization.

III. BENCHMARK METHODOLOGY

To thoroughly assess the autovectorization capabilities of
compilers, we adopted a dual approach that includes both
synthetic benchmarks (TSVC) and real-world applications,
ensuring a comprehensive evaluation across a wide range of
vectorization patterns and practical workloads. In the follow-
ing, we describe these approaches in detail.

Category #Loops Set 1 Set 2 Set 3 Set 4 Set 5
Control Flow 22 10 8 4 15 10
Control Loops 13 12 0 1 11 12
Crossing Thresholds 8 2 1 5 2 3
Equivalencing 5 3 1 1 5 5
Expansion 12 8 0 4 6 7
Global Data Flow 10 7 0 3 7 8
Indirect Addressing 7 5 0 2 4 7
Induction Variables 9 2 3 4 6 6
Linear Dependence 14 9 4 1 8 9
Loop Rerolling 4 0 4 0 3 2
Loop Restructuring 9 3 3 3 4 1
Node Splitting 6 2 0 4 1 2
Packing 3 1 0 2 0 0
Recurrences 3 1 0 2 0 0
Reductions 15 7 2 6 2 4
Searching 2 0 1 1 1 0
Statement Reordering 3 0 0 3 0 0
Symbolics 6 4 0 2 5 5
Sum 151 76 27 48 80 81

TABLE I: Number of loops in Set 1: (GCC-14<LLVM-19),
Set 2: (GCC-14>LLVM-19), Set 3: (GCC-14=LLVM-19),
Set 4 and 5: vectorized loops by GCC-14 and LLVM-19
compilers respectively.

A. Test Suite for Vectorizing Compilers (TSVC)

The Test Suite for Vectorizing Compilers (TSVC) builds
on earlier work that used 100 Fortran loops to evaluate the
effectiveness of autovectorizing compilers [6]. Additionally,
TSVC2 includes 151 loops implemented in C/C++ categorized
into 18 distinct groups [4] (Table I).

B. Real Applications

In addition to the synthetic benchmarks categorized in
the TSVC loops, we evaluated seven real-world applications
across diverse domains, as summarized in Table II. These
benchmarks were selected for their relevance in different
computational fields and their ability to highlight vectorization
patterns. Each application belongs to a domain and demon-
strates specific computational models and data-level paral-
lelism (DLP) patterns, providing a comprehensive overview

Authors preprint.
Not for redistribution.
The definitive version was published at PDP 2025, © IEEE



TABLE II: Overview of applications and their characteristics

Application Application Domain Algorithmical Model DLP Pattern Size of Benchmark

Blackscholes Financial Analysis Dense Linear Algebra Regular 16K entries
Jacobi-2D Engineering Dense Linear Algebra Regular 256 x 256 grid, 100 iterations
Needleman-Wunsch Bioinformatics/Genomics Dynamic Programming Irregular Sequence length 220

Particlefilter Medical Imaging Structured Grids Mix 128 x 128 x 16 grid, 4096 particles
Pathfinder Grid Traversal Dynamic Programming Regular 2048 width, 256 iterations
Streamcluster Data Mining Dense Linear Algebra Mix 8192 points, 128 dimensions
Axpy Vector Operations Dense Linear Algebra Regular Vector size 220

of vectorization challenges and opportunities on RISC-V sys-
tems.

In addition, these applications cover a range of algorithmic
models, such as dynamic programming, structured grids, and
linear algebra, offering a diverse set of workloads for perfor-
mance evaluation. The selected benchmarks also vary in their
DLP patterns, including regular, irregular, and mixed patterns
most of which are derived from RISCV-Benchmark-Suite [7].
Table II provides an overview of the selected applications,
highlighting their domains, algorithmic models, DLP patterns,
and size of benchmark. These characteristics illustrate the
diversity of workloads used to evaluate vectorization potential
on RISC-V RVV systems.

IV. EXPERIMENTAL EVALUATION

This section presents a performance analysis of autovec-
torization on RVV RISC-V boards for the GCC and LLVM
compilers.

TABLE III: Compute System Specifications

Allwinner D1
Processor XuanTie C906, Single-core 64-bit, 1.0 GHz
Cache 32 KB I-cache, 32 KB D-cache
Memory 1 GB DDR3
ISA RV64GCV (RVV 0.7)
Vector Width 128 bits

Banana Pi F3 (BPI-F3)
Processor SpacemiT K1, 8-core 64-bit RISC-V AI CPU

Cluster-0: 4-core, 2.0 TOPS AI, 32 KB L1/core,
512 KB L2, 512 KB TCM
Cluster-1: 4-core, 32 KB L1/core, 512 KB L2

Memory 4 GB LPDDR4
ISA RV64GCVB (RVV 1.0)
Vector Width 256/128-bits x2

A. Experimental setup

1) Hardware: Table III provides the specifications of the
compute systems used in this study, focusing on RISC-V
boards with support for vector extension. We evaluated two
different setups: the Allwinner D1 and the BananaPi-F3. The
Allwinner D1 supports RVV 0.7 and features a single-core
XuanTie C906 processor, making it a lower-power option suit-
able for examining basic vectorization capabilities in minimal
setups. Additionally, the BananaPi-F3 includes the SpacemiT
K1 processor with RVV 1.0 support. These setups enable

the analysis of autovectorization on two RISC-V boards with
different RVV versions.

TABLE IV: Compiler Flags for Vectorization Enabled, Cate-
gorized by RVV Version

RVV Version Compiler Vectorization Enabled

RVV 0.7

GCC-8.4 / GCC-10.2 -O3 -ftree-vectorize
-march=rv64gcv0p7

LLVM-EPI -O3 -fvectorize -mepi
-menable-experimental-extensions

-march=rv64gcv0p7

RVV 1.0

GCC-13 / GCC-14 -O3 -ftree-vectorize
-march=rv64gcv1p0

LLVM-16 / LLVM-19 -O3 -fvectorize -march=rv64gcv1p0

LLVM-EPI -O3 -fvectorize -mepi
-menable-experimental-extensions

-march=rv64gcv1p0

GCC-14-VLS -O3 -ftree-vectorize
-mrvv-vector-bits=zvl
-march=rv64gcv_zvl256b

LLVM-19-VLS -O3 -fvectorize
-mrvv-vector-bits=zvl
-march=rv64gcv_zvl256b

2) Compilers: Table IV provides a comprehensive overview
of the compilers and compiler flags utilized in our experiments.
The RVV 0.7 specification is not supported by the mainstream
GCC and LLVM compilers. However, on the Allwinner D1
board, vector instructions compatible with RVV 0.7 can be
generated using the XuanTie GCC [8] or the LLVM-EPI
compilers [9]. XuanTie GCC, a customized fork of the GNU
compiler created by T-Head, is specifically designed for T-
Head processors and supports the RVV 0.7 specification. The
LLVM-EPI compiler also enables the generation of vector
instructions for RVV 0.7. However, the compiler is built by
default to work with SEW up to 64, which is not compatible
with the Allwinner D1 hardware. For experiments related to the
updated RVV 1.0 standard, we employed the newer versions of
GCC (14.2), LLVM (19.1.1) and LLVM-EPI (v. 2024-09-28),
which fully support RVV 1.0.

3) Benchmarks setup: In order to evaluate the autovec-
torization capabilities of modern compilers, we followed a
comprehensive analysis based on TSVC loops categories as
we mentioned in Section III-A. To aggregate the results of
each loop into categories, we followed the same formula
specified by Siso et al. [4]. We compiled TSVC loops us-
ing different compilers with and without autovectorization
(Table IV). The scalar code is compiled only using -O3
and -fno-vectorize and -fno-tree-vectorize for
GCC and LLVM respectively. For each loop t in TSVC
we computed the median time of 5 runs for both the auto-

Authors preprint.
Not for redistribution.
The definitive version was published at PDP 2025, © IEEE



0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
G

e
o
m

e
tr

ic
 M

e
a
n
 o

f 
S
p
e
e
d
u
p Compiler

GCC-13-VLA

GCC-14-VLA

GCC-14-VLS

GCC-14-VLS-fmath

LLVM-16-VLA

LLVM-19-VLA

LLVM-19-VLS

LLVM-19-VLS-fmath

LLVM-EPI-VLA

Con
tro

l F
lo
w

(2
2 

lo
op

s)

Con
tro

l L
oo

ps

(1
3 

lo
op

s)

Cro
ss

in
g 

Th
re

sh
ol
ds

(8
 lo

op
s)

Eq
ui

va
le
nc

in
g

(5
 lo

op
s)

Ex
pa

ns
io
n

(1
2 

lo
op

s)

Glo
ba

l D
at

a 
Fl
ow

(1
0 

lo
op

s)

In
di

re
ct

 A
dd

re
ss

in
g

(7
 lo

op
s)

In
du

ct
io
n 

Va
ria

bl
e

(9
 lo

op
s)

Li
ne

ar
 D

ep
en

de
nc

e

(1
4 

lo
op

s)

Lo
op

 R
er

ol
lin

g

(4
 lo

op
s)

Lo
op

 R
es

tru
ct

ur
in

g

(9
 lo

op
s)

Nod
e 

Sp
lit

tin
g

(6
 lo

op
s) Pa

ck
in

g

(3
 lo

op
s)

Re
cu

rre
nc

es

(3
 lo

op
s)

Re
du

ct
io
ns

(1
5 

lo
op

s)

Se
ar

ch
in

g

(2
 lo

op
s)

St
at

em
en

t R
eo

rd
er

in
g

(3
 lo

op
s) Sy

m
bo

lic
s

(6
 lo

op
s)

Scalar

Fig. 1: Geometric mean of speedup achieved through autovectorization across different loop categories and compilers using
RVV 1.0

vectorized and non-vectorized code. Then we calculated the
speedup of the auto-vectorized version (E

vec
t ) using as a base-

line the non-vectorized code (scalar) E
scalar
t . For computing the

speedup of codes autovectorized by a specific compiler, we
considered the scalar version generated by the same compiler.
The speedup of the loop t is defined as η =

E
scalar
t

E
vec
t

. As we men-
tioned all 151 loops were divided into 18 distinct categories.
Therefore, for each category c, we aggregated the speedup of
loops using the geometric mean (

∏n
i=1 ηi)

1
n , where n is the

number of loops in each category c (Figure. 1 and 3). Finally,
we computed the overall geometric mean for each compiler
in the 18 categories to have a comprehensive comparison of
the autovectorization support of each compiler (Figure. 7).
Likewise, for real-word application we followed the same
approach by computing the speedup of the autovectorized
code using as baseline the scalar one. The input size of each
benchmark is defined in Table II.

The following sections explore the compiler’s autovector-
ization capabilities for RISC-V RVV 1.0 and 0.7, assessed
using TSVC and real-world benchmarks.

B. Measuring Vectorization Performance of TSVC Loops

1) TSVC on RISC-V RVV 1.0: Figure 1 illustrates the
autovectorization capabilities of the compilers listed in Table
IV for each category of the TSVC benchmark for RVV
1.0. With regard to Figure 1, the principal findings can be
summarized as follows.

Fig. 2: TSVC patterns that are not vectorized by any compiler

Code not vectorized by any compiler: For loop pat-
terns such as Packing, Recurrences, Reductions, and

Statement Reordering (as shown in Figure 2), neither
GCC nor LLVM could effectively vectorize the code on RISC-
V.

In the Packing pattern, the compiler is unable to vec-
torize the code because the conditional statement introduces
uncertainty about the control flow and the data access pattern
associated with the variable j.

For the Recurrences pattern, vectorization is hindered
by loop-carried dependencies: the value of a[i] depends on
b[i-1] from the previous iteration, and b[i] relies on the
value of a[i] calculated within the same iteration. These de-
pendencies enforce sequential execution, making vectorization
impossible.

The Statement Reordering pattern introduces addi-
tional write-after-read dependencies into the Recurrences
pattern, complicating the compiler’s ability to reorder com-
putations to eliminate read-after-write and write-after-read
dependencies, further obstructing vectorization.

Lastly, in the Reduction pattern without using
-fast-math option most of the loops are not vectorized
due to non associativity of floating point operations. Out of
15 reduction patterns, only two are vectorized by GCC 14,
and four by LLVM 19 (Table I). The vectorized code might
generate instructions where elements are aggregated in a
different order than in the scalar version. This reordering can
yield different numerical results, discouraging the compiler
from vectorizing the code to maintain accuracy. Enabling
fast-math optimizations, both GCC and LLVM compilers
are able to vectorize loops in the Reduction category, leading
to a speedup of up to 3x. The fast-math optimizations
also enhances other categories, particularly those involving
reduction operations, by increasing the overall speedups.

To further explore this limitation, we also evaluated these
patterns on x86 architecture and observed the same behavior.
This implies that these loop categories inherently represent a
challenge for autovectorization, posing optimization difficul-
ties across both x86 and RISC-V architectures.

Codes vectorized only by GCC: GCC demonstrates a
notable speedup in patterns such as Loop Restructuring
and Searching, indicating its advantage in handling these

Authors preprint.
Not for redistribution.
The definitive version was published at PDP 2025, © IEEE



types of loops compared to LLVM.
In Loop Restructuring 5 out of 9 loops are not

vectorized by the GCC and LLVM 16 and 19 compilers (Table
I). GCC is able to vectorize the other 4 loops, while LLVM 16
and 19 vectorize only one loop. LLVM-EPI fails to vectorize
any loops.

for(int i=1;i<N;i++)
{
a[i]+=b[i]*c[i];
e[i]=e[i-1]*e[i-1];
a[i]-=b[i]*c[i];
}

Listing 1: TSVC loop s222
(Loop Restructuring)

for(int i=0;i<N;++i){
for(int j=1;j<N;j++){
a[j][i]=

a[j-1][i]+b[j][i];
}

}

Listing 2: TSVC loop s231
(Loop Restructuring)

Listings 1 and 2 show the TSVC s222 and s231 loops that
are not vectorized by LLVM. For s222, the LLVM compiler is
unable to vectorize the code due to loop-carried dependencies
in the middle part of the loop (line 4), while the GCC compiler
separates the loop into two, enabling automatic vectorization.

In loop s231 LLVM is not able to apply loop interchange
due to the data dependencies between iterations (line 4)
missing the opportunity to vectorize the code.

Listing 3 shows the loop s331 from Searching pattern.
LLVM is not able to vectorize the code while GCC achieves
4.5x speedup. The GCC compiler uses mask operation to
vectorize the code, while LLVM is unable to deduce that j
retains only the value for the last negative element. To help
LLVM vectorize, all the indexes for which a[i]<0 can be
stored in a vector as defined in the commented code and then
use the last element of the indices vector.

// std::vector<int> indices(N);
for(int i = 0; i < N; i++){

if(a[i] < 0){
// indices.push_back(i);
j = i;

}
}

Listing 3: TSVC loop s331 (Searching)

Code vectorized only by LLVM: In the Expansion
category, LLVM demonstrates a clear performance advantage
over GCC, particularly in loop s255 (Listing 4).

for(int i = 0; i < N; i++){
a[i] = (b[i] + x + y) * 0.333;
y = x;
x= b [i];

}

Listing 4: TSVC loop s255 (Expansion)

In this loop, variables x and y introduce interdependency
between consecutive iterations, meaning that x and y cannot
be computed in parallel throughout the loop. Due to this
loop-carried data dependence, GCC is unable to vectorize

s255, whereas LLVM overcomes this limitation, resulting
in a 7x speedup. Compared to GCC, LLVM identifies the
dependencies introduced by x and y and separates the scalar
portion of the code from the vectorizable part, allowing auto-
matic vectorization. Furthermore, LLVM demonstrates better
performance in the Expansion category, especially in loops
s252 and s253, achieving speedups ranging from 4x to 6x.
In contrast, GCC only manages speedups of 1.5x to 2.5x due
to a different selection of the LMUL parameter. While LLVM-
EPI shows a slowdown compared to LLVM 16 and 19 for the
Expansion category, on loops s256 and s257, it performs
more efficiently by avoiding unnecessary vectorization.

VLA vs VLS: For both compilers, specifying the vector
length at compile time generates a more optimized code for
VLS, compared to VLA. In VLA since the vector length is
variable at runtime, the compiler has to generate more generic
code to handle different possible lengths. This introduces
overhead, as the compiler cannot optimize for a fixed length
and may introduce run-time checks or masking to handle
different vector lengths efficiently. Furthermore, knowing the
vector length can affect the LMUL parameter tuning leading to
drastic differences in performance (Section IV-C).

Con
tro

l F
lo
w

(2
2 

lo
op

s)

Con
tro

l L
oo

ps

(1
3 

lo
op

s)

Cro
ss

in
g 

Th
re

sh
ol
ds

(8
 lo

op
s)

Eq
ui

va
le
nc

in
g

(5
 lo

op
s)

Ex
pa

ns
io
n

(1
2 

lo
op

s)

Glo
ba

l D
at

a 
Fl
ow

(1
0 

lo
op

s)

In
du

ct
io
n 

Va
ria

bl
e

(9
 lo

op
s)

Li
ne

ar
 D

ep
en

de
nc

e

(1
4 

lo
op

s)

Lo
op

 R
er

ol
lin

g

(4
 lo

op
s)

Lo
op

 R
es

tru
ct

ur
in

g

(9
 lo

op
s)

Sy
m

bo
lic

s

(6
 lo

op
s)

0.0

0.5

1.0

1.5

2.0

G
eo

m
et

ri
c 

M
ea

n 
of

 S
pe

ed
up Compiler

GCC-8.4-VLA Scalar

Fig. 3: Geometric mean of speedup achieved through auto-
vectorization across different loop categories and compilers
using RISC-V RVV 0.7

2) TSVC on RISC-V RVV 0.7: Figure 3 shows the TSVC
categories that achieve some speedup on RISC-V RVV 0.7.
We removed the GCC 10.2 compiler since it is unable to
vectorize any of the loops. Additionally, the missing categories
are not vectorized by GCC 8.4 either. The support for autovec-
torization for the RVV 0.7 extension is significantly poorer
compared to the newer version 1.0.

C. Improving performance with LMUL

To further enhance flexibility and performance, RVV defines
the LMUL parameter which specifies the size of a vector
register group, allowing single vector instructions to operate
on operands that span multiple registers.

RVV 0.7 supports integer LMUL values of 1, 2, 4, or
8, forming vector register groups consisting of 1, 2, 4, or
8 registers, respectively. Additionally, RVV 1.0 introduces
support for fractional LMUL values: 1/2, 1/4, and 1/8. These
fractional values reduce the effective size of the vector register,
allowing more vector registers to be used simultaneously,

Authors preprint.
Not for redistribution.
The definitive version was published at PDP 2025, © IEEE



Con
tro

l F
lo
w

(2
2 

lo
op

s)

Con
tro

l L
oo

ps

(1
3 

lo
op

s)

Cro
ss

in
g 

Th
re

sh
ol
ds

(8
 lo

op
s)

Eq
ui

va
le
nc

in
g

(5
 lo

op
s)

Ex
pa

ns
io
n

(1
2 

lo
op

s)

Glo
ba

l D
at

a 
Fl
ow

(1
0 

lo
op

s)

In
di

re
ct

 A
dd

re
ss

in
g

(7
 lo

op
s)

In
du

ct
io
n 

Va
ria

bl
e

(9
 lo

op
s)

Li
ne

ar
 D

ep
en

de
nc

e

(1
4 

lo
op

s)

Lo
op

 R
er

ol
lin

g

(4
 lo

op
s)

Lo
op

 R
es

tru
ct

ur
in

g

(9
 lo

op
s)

Nod
e 

Sp
lit

tin
g

(6
 lo

op
s) Pa

ck
in

g

(3
 lo

op
s)

Re
cu

rre
nc

es

(3
 lo

op
s)

Re
du

ct
io
ns

(1
5 

lo
op

s)

Se
ar

ch
in

g

(2
 lo

op
s)

St
at

em
en

t R
eo

rd
er

in
g

(3
 lo

op
s) Sy

m
bo

lic
s

(6
 lo

op
s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
G

e
o
m

e
tr

ic
 M

e
a
n
 o

f 
S
p
e
e
d
u
p GCC-14-LMUL=1

GCC-14-LMUL=2

GCC-14-LMUL=4

GCC-14-LMUL=8

GCC-14-LMUL=Dynamic

LLVM-19-LMUL=1

LLVM-19-LMUL=2

LLVM-19-LMUL=4

LLVM-19-LMUL=8

Scalar

Fig. 4: Geometric mean of speedup achieved through autovectorization across TSVC loop categories, comparing performance
for GCC-14 and LLVM-19 with various LMUL configurations with RVV 1.0

which can be beneficial in scenarios where register pressure
is high, and smaller data sets are being processed.

Figure 4 shows the geometric mean of the speedup for each
TSVC category as we increase the LMUL parameter from 1
to 8 for GCC-14 and LLVM-19. For both compilers, we can
set the suggested LMUL as option using -mrvv-max-lmul
and -riscv-v-register-bit-width-lmul. The GCC
compiler benefits from higher LMUL values in 10 out of 18
TSVC categories while in LLVM only 5 categories show
improvement. With higher LMUL values, each instruction can
process a larger subset of data, reducing the number of
instructions needed to handle a full data set. This leads to
a more compact code for data-parallel sections. Furthermore,
during loop strip mining, a higher LMUL reduces the number
of iterations required, as more elements can be processed in
each iteration, resulting in performance improvements. For
Induction Variables, Loop Rerolling and Node
Splitting, GCC does not benefit from increased LMUL
due to high register pressure introduced by the use of LMUL.
In fact, by increasing LMUL from 1 to 8 we also decrease
the number of available registers from 32 to 4. Therefore,
having fewer registers available can result in memory spilling
as it becomes challenging to keep all variables in registers
simultaneously. The same occurs in LLVM for the Indirect
Addressing and Linear Dependencies categories.
Other categories remain unaffected by LMUL, as they are not
vectorized by any compiler.

Since fractional LMUL cannot be specified as a compiler
option, we developed a small benchmark using vector intrin-
sics to demonstrate the effectiveness of fractional LMUL. The
benchmark consists of a loop that runs a vector addition on
8-bit integers followed by add, sub, and multiply operations
on int64 array. Without fractional LMUL the compiler, in
order to work on the same number of elements, needs to use
LMUL=1 for the first operation and LMUL=8 for the others.
However, using LMUL=8, only 4 registers are available. This
compromises the performance due to high register pressure
introduced by 64-bit operations.

Figure 5 shows the speedup of three versions of the bench-
mark: the no-fraction LMUL version sets the LMUL to

1

2

3

S
p
e
e
d
u
p 2.14

2.39

3.07Scalar (Baseline)

No-Fractional
LMUL

Fractional
LMUL

Autovec

Fig. 5: Speedup of code with and without fractional LMUL

1 and 8; the fractional LMUL sets the LMUL parameter
to 1/8 and 1, the autovec version, which automatically
select the LMUL size. Fractional LMUL achieves a 2.39x
speedup compared to the 2.14x speedup of the code that cannot
take advantage of fractional LMUL. Furthermore, leveraging
autovectorization, the compiler uses an LMUL of 1/4 and 2,
resulting in even higher performance compared to the code
implemented with intrinsics.

D. Measuring Vectorization Performance of Real Applications

To complement the evaluation, we also measured the per-
formance of real-world applications with autovectorization
enabled, as defined in Table IV.

Figure 6 shows the speedup achieved through autovectoriza-
tion across six real applications and all compilers using RVV
0.7 and 1.0.

With RVV 0.7 only the simplest code axpy, achieves a 1.7x
speedup due to vectorization, while for all other applications
vectorization is not applied. The improvement achieved in
streamcluster is not related to vectorization but only to
the use of -ffast-math. These results validate the limited
support for autovectorization found in RVV 0.7.

Looking at the RVV 1.0 results, for needleman-wunsch
and particelfilter the compilers cannot autovectorize
critical sections due to memory dependencies that are con-
sidered unsafe for vectorization, resulting in minimal speedup

Authors preprint.
Not for redistribution.
The definitive version was published at PDP 2025, © IEEE



axpy blackscholes jacobi-2d needleman-wun particlefilter pathfinder streamcluster
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
S
p
e
e
d
u
p

GCC-8.4-VLA

RVV 0.7 RVV 1.0

GCC-8.4-VLA-fmath

GCC-10.2-VLA

GCC-13-VLA

GCC-14-VLA

GCC-14-VLS

GCC-14-VLS-fmath

LLVM-16-VLA

LLVM-19-VLA

LLVM-19-VLS

LLVM-19-VLS-fmath

LLVM-EPI-VLA

Scalar

Fig. 6: Speedup achieved through autovectorization across real applications and compilers with using RVV 0.7 and 1.0

over scalar code. Although blackscholes is embarrass-
ingly parallel, compilers are not able to vectorize the code
due to difficulties in vectorizing math functions. LLVM-EPI
achieves a speedup of 3.5x in jacobi-2d compared to the
speedup of 3x in the other compilers, while for pathfinder
experiences a slowdown, reducing performance to half of
the scalar version. These results are justified by the differ-
ent settings of the LMUL parameter between compilers that
can drastically impact performance. In jacobi-2d using
LMUL=1, LLVM-EPI is able to achieve higher performance,
while in pathfinder selecting an LMUL=1/2 the LLVM-
EPI compiler results in a slowdown. With VLS configuration
pathfinder achieves up to 3.5x speedup for both LLVM
19 and GCC 14 compared to 2.5x speedup of the VLA
configuration. Specifying the vector length allows the compiler
to select a better LMUL value, improving overall performance.

With -ffast-math enabled and the VLS configuration,
LLVM 19 allows the vectorization of blackscholes appli-
cation resulting in speedup up to 1.6x. The compiler unrolls
math function to process them in scalar mode and then
switches back to vector computation.

E. Comparative Discussion Across Compilers

GCC-1
0.

2-
VLA

GCC-8
.4

-V
LA

GCC-1
3-

VLA

GCC-1
4-

VLA

GCC-1
4-

VLS

LL
VM

-1
6-

VLA

LL
VM

-1
9-

VLA

LL
VM

-1
9-

VLS

LL
VM

-E
PI

-V
LA

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

G
e
o
m

e
tr

ic
 M

e
a
n
 o

f 
S

p
e
e
d

u
p

Scalar

1.00

1.21

1.40

1.58 1.60
1.49 1.51

1.66

1.44

Fig. 7: Geometric mean of speedup across all categories TSVC
loops and compilers

Figure 7 shows the aggregated geometric mean of speedup
across all TSVC categories for each compiler. The compiler
support for autovectorization is notably limited in RVV 0.7
compared to RVV 1.0. With GCC 10.2 code is not vectorized
while with GCC 8.4, vectorization is applied only on simple
patterns. In contrast, in RVV 1.0, the support for vectorization

has significantly improved showing an overall speedup of up
to 1.60x. Although the number of loops vectorized by GCC-
14-VLS and LLVM-19-VLS are the same, the LLVM-19-VLS
achieves better performance on 76 loops over 151 (Table I).
These results are mostly related to a better selection of LMUL
parameter. LLVM 19 is more influenced by vector length
knowledge than GCC 14. In fact, LLVM 19 shows a consistent
improvement with VLS across all categories. It achieves a
1.66x speedup compared to the 1.51x of VLA. Meanwhile,
GCC 14 shows similar performance between VLS and VLA.
GCC 14 shows a noticeable performance improvement over
GCC 13. This suggests that the GCC 14 version has undergone
optimizations that enhance performance. LLVM-EPI perfor-
mance aligns closely with that of LLVM-19 in VLA mode.

In summary, LLVM 19 with VLS configuration achieves the
highest performance among all compilers.

V. RELATED WORK

Vectorization plays a critical role in enhancing the perfor-
mance of applications across various fields, including HPC,
machine learning, and multimedia processing. Compiler sup-
port for autovectorization [3], [10]–[14] is essential for real-
izing these performance gains. With the increasing adoption
of VLA ISAs such as RISC-V RVV, recent studies focus
on optimizing compiler support to fully leverage RISC-V
vectorization across various hardware platforms [15]–[17].
Adit and Sampson [3] used the gem5 simulation to assess
LLVM autovectorization performance for RISC-V RVV 1.0,
examining both VLA and VLS configurations. Their study
highlighted LLVM’s limitations in handling dynamic vector
lengths and shuffle patterns, comparing RVV’s performance
to fixed-length ISAs like AVX-512. Lin et al. [18] address
the portability challenges in VLA programming by developing
methods to adapt Arm SVE intrinsics to RVV. Ramı́rez et al.
[7] extended gem5 to support RVV instruction, allowing cus-
tomizable configurations for vector registers, memory ports,
and lanes. They developed a benchmark suite of diverse HPC
and embedded applications. Their findings show performance
gains with vectorization, though compiler limitations impact
complex data structures, highlighting the need for further
compiler optimizations for RISC-V vector architectures. Lai et
al. [19] presents enhancements to LLVM’s autovectorization
capabilities for linear recurrence programs on the RISC-V
Vector RVV, focusing on scan operations to address loop-
carried dependencies. Lee et al. [5] evaluated autovectorization

Authors preprint.
Not for redistribution.
The definitive version was published at PDP 2025, © IEEE



support of T-Head GCC-8.4 compiler compatible with RVV
0.7.1 on Allwinner D1 hardware. To facilitate a comparison
between the T-Head GCC-8.4 and the LLVM compiler—which
lacks support for RVV 0.7—they modified the assembly code
generated by LLVM (originally compatible with RVV 1.0) to
be compatible with RVV 0.7 [20]. Their study demonstrated
not only vectorization speedups for HPC kernels, but also
revealed limitations due to incomplete support in both tooling
and hardware, including the lack of 64-bit element support
and sensitivity to loop structures. Their findings emphasize
the early development stage of the RVV ecosystem and the
need for improved compatibility with present standards like
RVV v1.0. Lin et al. [21] assess the performance of RVV on
computer vision algorithms using intrinsic functions on the
Xuantie C906 RISC-V. Their evaluation specifically examines
the impact of using different integer LMUL settings showing
2.98x performance speedup against the OpenCV implemen-
tation. Shih et al. [22] developed a predictor within LLVM
that automatically selects the optimal LMUL value to minimize
register pressure.

Our work provides a comprehensive analysis of compiler
autovectorization capabilities for RISC-V RVV 0.7 and 1.0
across different compiler versions and real hardware, showing
the performance impact of VLA and VLS on the LMUL
parameter tuning.

VI. CONCLUSION

In this paper we analyzed the autovectorization capabilities
of modern compiler toolchains for RISC-V RVV 0.7 and 1.0.
This study demonstrates significant improvements in autovec-
torization support for RVV 1.0 over RVV 0.7, with RVV
1.0 compilers providing better support for vectorizing diverse
patterns. Furthermore, our findings highlight that the compiler
handling of LMUL parameters is a critical factor to improve
the performance of autovectorized code, as selecting optimal
LMUL values minimizes the register pressure and improves
parallel processing efficiency.

ACKNOWLEDGMENT

The project has received funding from the Italian Ministry
of University and Research under PRIN 2022 grant No.
2022CC57PY (LibreRT project).

REFERENCES

[1] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanovic, “The risc-
v instruction set manual, volume i: User-level isa, version 2.0,” EECS
Department, University of California, Berkeley, Tech. Rep. UCB/EECS-
2014-54, p. 4, 2014.

[2] T. R.-V. Foundation, “RISC-V Vector Extension,”
https://github.com/riscv/riscv-v-spec, 2021.

[3] N. Adit and A. Sampson, “Performance left on the table: An evaluation
of compiler autovectorization for risc-v,” IEEE Micro, vol. 42, no. 5,
pp. 41–48, 2022.

[4] S. Siso, W. Armour, and J. Thiyagalingam, “Evaluating auto-vectorizing
compilers through objective withdrawal of useful information,” ACM
Trans. Archit. Code Optim., vol. 16, no. 4, Oct. 2019. [Online].
Available: https://doi.org/10.1145/3356842

[5] J. K. L. Lee, M. Jamieson, N. Brown, and R. Jesus, “Test-driving risc-v
vector hardware for hpc,” in High Performance Computing, A. Bienz,
M. Weiland, M. Baboulin, and C. Kruse, Eds. Cham: Springer Nature
Switzerland, 2023, pp. 419–432.

[6] D. Callahan, J. Dongarra, and D. Levine, “Vectorizing compilers: a
test suite and results,” in Supercomputing ’88:Proceedings of the 1988
ACM/IEEE Conference on Supercomputing, Vol. I, 1988, pp. 98–105.

[7] C. Ramı́rez, C. A. Hernández, O. Palomar, O. Unsal, M. A.
Ramı́rez, and A. Cristal, “A risc-v simulator and benchmark suite
for designing and evaluating vector architectures,” ACM Trans.
Archit. Code Optim., vol. 17, no. 4, nov 2020. [Online]. Available:
https://doi.org/10.1145/3422667

[8] XUANTIE-RV, “xuantie-gnu-toolchain,” https://github.com/XUANTIE-
RV/xuantie-gnu-toolchain, accessed: 2024-10-30.

[9] R. Ferrer, “Llvm-epi repository,” https://repo.hca.bsc.es/gitlab/rferrer/llvm-
epi, 2024, accessed: [Insert Date Here].

[10] J. G. Feng, Y. P. He, and Q. M. Tao, “Evaluation of compilers’ capability
of automatic vectorization based on source code analysis,” Scientific
Programming, vol. 2021, no. 1, p. 3264624, 2021.

[11] N. Brown, M. Jamieson, J. Lee, and P. Wang, “Is risc-v ready
for hpc prime-time: Evaluating the 64-core sophon sg2042 risc-v
cpu,” in Proceedings of the SC ’23 Workshops of The International
Conference on High Performance Computing, Network, Storage, and
Analysis, ser. SC-W ’23. New York, NY, USA: Association for
Computing Machinery, 2023, p. 1566–1574. [Online]. Available:
https://doi.org/10.1145/3624062.3624234

[12] A. Pohl, B. Cosenza, M. A. Mesa, C. C. Chi, and B. Juurlink, “An eval-
uation of current simd programming models for c++,” in Proceedings of
the 3rd Workshop on Programming Models for SIMD/Vector Processing,
2016, pp. 1–8.

[13] A. Pohl, B. Cosenza, and B. Juurlink, “Vectorization cost modeling for
neon, avx and sve,” Performance Evaluation, vol. 140, p. 102106, 2020.

[14] ——, “Portable cost modeling for auto-vectorizers,” in 2019 IEEE 27th
International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS). IEEE, 2019,
pp. 359–369.

[15] A. Pohl, M. Greese, B. Cosenza, and B. Juurlink, “A performance anal-
ysis of vector length agnostic code,” in 2019 International Conference
on High Performance Computing & Simulation (HPCS). IEEE, 2019,
pp. 159–164.

[16] M. Perotti, S. Riedel, M. Cavalcante, and L. Benini, “Spatz: Clustering
compact risc-v-based vector units to maximize computing efficiency,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 2025.

[17] A. Lopoukhine, F. Ficarelli, C. Vasiladiotis, A. Lydike, J. V. Delm,
A. Dutilleul, L. Benini, M. Verhelst, and T. Grosser, “A multi-level
compiler backend for accelerated micro-kernels targeting risc-v isa
extensions,” in Proceedings of the 2025 Conference on Compiler and
Generator Optimization (CGO), 2025.

[18] J.-K. Lin, Y.-L. Yang, H.-M. Lai, and J.-K. Lee, “Rewriting and
optimizing vector length agnostic intrinsics from arm sve to rvv,”
in Workshop Proceedings of the 53rd International Conference on
Parallel Processing, ser. ICPP Workshops ’24. New York, NY,
USA: Association for Computing Machinery, 2024, p. 38–47. [Online].
Available: https://doi.org/10.1145/3677333.3678151

[19] H.-M. Lai, J.-K. Lee, and Y.-S. Hwang, “Enhancing llvm optimizations
for linear recurrence programs on rvv,” in Proceedings of the
52nd International Conference on Parallel Processing Workshops,
ser. ICPP Workshops ’23. New York, NY, USA: Association
for Computing Machinery, 2023, p. 79–87. [Online]. Available:
https://doi.org/10.1145/3605731.3605904

[20] J. K. L. Lee, M. Jamieson, and N. Brown, “Backporting risc-v vector
assembly,” in High Performance Computing, A. Bienz, M. Weiland,
M. Baboulin, and C. Kruse, Eds. Cham: Springer Nature Switzerland,
2023, pp. 433–443.

[21] R.-S. Li, P. Peng, Z.-Y. Shao, H. Jin, and R. Zheng,
“Evaluating risc-v vector instruction set architecture extension with
computer vision workloads,” Journal of Computer Science and
Technology, vol. 38, no. 4, pp. 807–820, 2023. [Online]. Available:
https://www.sciopen.com/article/10.1007/s11390-023-1266-6

[22] M.-S. Shih, H.-M. Lai, C.-L. Lee, C.-K. Chen, and J.-K. Lee,
“Register-pressure aware predicator for length multiplier of rvv,”
in Workshop Proceedings of the 51st International Conference on
Parallel Processing, ser. ICPP Workshops ’22. New York, NY, USA:
Association for Computing Machinery, 2023. [Online]. Available:
https://doi.org/10.1145/3547276.3548513

Authors preprint.
Not for redistribution.
The definitive version was published at PDP 2025, © IEEE


