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Abstract—At the LHC, particles are collided in order to
understand how the universe was created. Those collisions are
called events and generate large quantities of data, which have to
be pre-filtered before they are stored to hard disks. This paper
presents a parallel implementation of these algorithms that is
specifically designed for the Intel Xeon Phi Knights Landing
platform, exploiting its 64 cores and AVX-512 instruction set. It
shows that a linear speedup up until approximately 64 threads
is attainable when vectorization is used, data is aligned to cache
line boundaries, program execution is pinned to MCDRAM,
mathematical expressions are transformed to a more efficient
equivalent formulation, and OpenMP is used for parallelization.
The code was transformed from being compute bound to
memory bound. Overall, a speedup of 36.47x was reached while
obtaining an error which is smaller than the detector resolution.

Index Terms—Intel Xeon Phi, Knights Landing, OpenMP, Vec-
torization, Parallel Programming

I. INTRODUCTION

At the Large Hadron Collider (LHC) at CERN, particles
are collided in order to understand how the universe evolved.
In the LHCb experiment, proton-proton collisions are used to
investigate the matter-antimatter asymmetry of the universe.
An array of detectors collects data, which is preprocessed in
a filter and forwarded to a hard drive based storage system.
This filter performs a fast track reconstruction and comes to
a preliminary decision which particle type might have caused
the collision results. This paper focuses on the optimization
of the filtering process.

When a particle travels through a medium with a speed
faster than light, it emits photons, the so-called Cherenkov
radiation [7]. These photons are emitted in a cone around
the particle track and the cone’s opening angle depends on
the particle’s speed. Using a Ring-Imaging Cherenkov (RICH)
detector, a pixel matrix captures these photons as Cherenkov
rings. Based on these rings, the particle’s speed and conse-
quently its type can be inferred. This is done with the RICH
particle detector algorithm. Figure 1 presents an overview of
the algorithm while a thorough description can be found in
section III.

The process of inferring particles is computationally in-
tensive, however. That is why the experiment is currently
limited to rarely-occurring special cases. Nonetheless, the

LHCb trigger, which decides which collision data to keep,
and the readout system will be upgraded in 2018. After the
upgrade, the LHCb experiment strives for a hardware-trigger-
free readout using an event filter farm, which will process
an event every 25 ns. With a collision rate of 40 MHz, the
downlink from the detector to the event filter farm has to
be increased from 500 Gbit/s to 40 Tbit/s [7]. It is therefore
critical to speed up the RICH particle detector algorithm with
a similar order of magnitude to keep up with the forthcoming
upgrades.

As of today, the algorithm’s production code, written in
C++, is run on a x86-compatible CPU cluster. To keep up
with the future detector hardware environment, we ported the
particle identification algorithm to Intel’s Xeon Phi Knights
Landing (KNL) processor, a platform designed for HPC work-
loads [6]. In order to utilize all features this HPC platform has
to offer, the following techniques were applied to the current
production code:

• improving memory access patterns and data layouts in
memory

• exploiting manual code vectorization using intrinsics
• exploiting multi-threading using OpenMP [5]
• replacing mathematical functions with their optimized

counterparts
• using numerical approximations while obeying accuracy

requirements

Using all of these techniques combined, we were able
to achieve a 36.47x speedup over current production code
running on the KNL with 256 OpenMP threads and 5263x
over a single thread.

This paper is organized as follows: Section II discusses
related work in the areas of algorithmic improvements on
KNL, code vectorization, and mathematical optimizations.
Section III details the RICH particle detector algorithm and
presents the core mathematical functions that were optimized.
Section IV briefly presents the platforms that were used in this
work, while Section V thoroughly describes all optimization
steps. Results are shown in Section VI and conclusions are
provided in Section VII.



Fig. 1: Structure of the RICH algorithm. Grey circles show
hotspots of algorithm which this paper focuses on.

II. RELATED WORK

Forty et al. [9] describes the RICH pattern recognition
algorithm based on the knowledge about the physics of the de-
tector. An estimation of the accuracy and physical limitations
is given. The Cherenkov angle algorithm, which this paper
focuses on, is also described in detail.

Färber et al. [7] researches the acceleration of the Cherenkov
angle reconstruction for the LHCb experiment on an FPGA.
They reach a calculation time of around 10 ns per photon
for 2 · 106 photons, which is around 50 times as long as our
best time for per photon using all improvements and OpenMP
threads.

Ramos and Hoefler [18] reported that it was difficult
to achieve the maximum MCDRAM bandwidth with their
memory benchmark in SNC4-flat mode tuned for the KNL
architecture. Reaching this bandwidth was not possible with
our code because it is compute bound. Instead of the nominal
340 GB/s, we reached up to 80% of this bandwidth.

Haidar et al. [10] researched the performance of the LU,
QR and Cholesky factorization on the KNL in an attempt to
design a programming model which would provide a portable
and efficient matrix decompositions across hybrid environ-
ments. Using the MKL, they reached a performance of up to
1.4 TFLOP/s for a Dynamic-MAGMA QR decomposition
in double precision, which is about half the double precision
FMA performance possible on this platform.

LaGrone et al. [13] performed benchmarks on a 16 core
Nehalem to determine the overhead for different OpenMP
constructs. They found out that the overhead increases faster
than linear using the Intel C and GNU C compiler.

Wende et al. [20] explored the possibilities of a program-
mer to improve the performance of his code using SIMD.
The authors presented examples where compiler vectorization

failed, and how the programmer can adjust his code to help
the compiler to vectorize. They enhanced code to enable
compiler autovectorization, which led to a performance which
was comparable to or most of the time even better than code
using intrinsics. The authors suggest defining custom vector
data types which are multiples of the hardware’s native SIMD
vector length or width, replacing scalar function arguments by
the vector counterparts and extending function bodies with a
SIMD loop (loop count equals SIMD vector length, so that the
compiler can automatically generate vector instructions from
that).

Pankiewicz et al. [15] describe an algorithm for efficiently
calculating a polynomial and its derivatives. The algorithm is
based on additions and multiplications, which can be calcu-
lated in one cycle on processors supporting Fused Multiply-
Add (FMA) instructions.

III. ALGORITHM

A. Overview

Figure 1 depicts the full RICH particle detection algorithm.
This code is one stage of a sequence of algorithms that aim to
reconstruct the particle properties within the detector. Input to
the algorithm are pixel images recorded by the RICH detector,
whose sensor works similar to a digital camera. Photons could
have spilled over to neighboring detector cells, and they need
to be clustered before processing them further. As a second
input, the algorithm receives the particle’s track from a previ-
ous stage of the event reconstruction. Using this information,
impossible combinations are eliminated early on. With this
clustered, reduced photon set and the corresponding track
information, the Cherenkov angle for every track and pixel
cluster combination is calculated. Then, the probability of
producing this set of Cherenkov angles is calculated for each
of the detectable five particle types. A likelihood maximization
stage finally selects the most probable combination of the five
particles types (e, µ, π,K, p) which could have produced this
exact combination of tracks and clusters.

B. Cherenkov Angle Calculation

After performing extensive profiling of the algorithm, we
have found that the Cherenkov angle calculation was the
computational bottleneck. It took up one third of the total
execution time in the production code and therefore required
a thorough analysis to identify possible improvements.

Figure 2 (b) depicts a particle track ~t, as well as the track of
its emitted photon ~p. The angle between these two tracks θc is
the opening angle of the cone that is captured as Cherenkov
rings in the RICH detector. Knowing the Cherenkov emission
angle θc enables particle type inference.

Figure 2 (a) presents a schematic of a particle passing
through the RICH detector from the side view. The particle
travels along the track t and emits a photon at point E. The
photon is reflected at point M on the mirror segment, which
has its center of curvature at point C, and is detected in point
D. The Cherenkov angle θc is the angle between ~EM and
the particle track t. The algorithm receives the radius R and
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Fig. 2: Cherenkov angle reconstruction [9]

cartesian coordinates of the center of curvature of the mirror
C as well as the coordinates of the emission point E and
detection point D. The output of the algorithm is the spherical
reflection point M .

As a first step, we calculate sin(β) using the fourth grade
polynomial, which describes the trigonometric relation be-
tween the distance of the detection point d and emission
point e from the center of the mirror curvature (Eq. 1). The
coefficients of the polynomial have to be calculated first,
using the known values R, d and e, where dy = d sin γ and
dx = d cos γ. Next, the reflection point M is obtained by
rotating the vector ~e around C by an angle β and scaling it
to length R.

4e2d2 sin4(β)− 4e2dyR sin3(β)

+
(
d2yR

2 + (e+ dx)
2R2 − 4e2d2

)
sin2(β)

+ 2edy
(
e− dx

)
R sin(β) +

(
e2 −R2)d2y = 0

(1)

Finally, the Cherenkov emission angle θc can be calculated
from the reflection point M , using the formula cos(θc) = ~p ·~t
where ~t is the unit vector along the track direction and ~p the
unit vector along the trajectory of the photon [9]. Since the
calculation of the Cherenkov angle θc is independent for each
photon, the code can be efficiently parallelized so that photon
emission angles are calculated by different threads and vector
units without the need of extensive synchronization.

IV. PLATFORMS

A. Intel Xeon Phi (Knights Landing)

Intel’s Xeon Phi 7210 platform is based on the Silvermont
mircoarchitecture, with significant changes for HPC use. It is
a manycore CPU with 64 cores and up to four hyperthreads
per core [3]. Each core has a 32 KB L1 cache, and the 1 MB
L2 cache is symmetrically shared between cores. Two cores
are organized into one tile, and the L2 cache is coherent across
all tiles. KNL utilizes a mesh infrastructure to connect them.

Every core is extended by two vector processing units,
which support the AVX-512 Foundation (F) instruction set,
and incorporate an Extended Math Unit (EMU) for scientific
functions, such as exp, log, or sin.

Furthermore, KNL utilizes Multi-Channel DRAM (MC-
DRAM), a High Bandwidth Memory (HBM). The MCDRAM
can be used as a transparent Last Level Cache (LLC), sitting
between the L2 cache and main memory. Alternatively, it can

be configured in flat mode to extend the DRAM, delivering
up to 340 GB/s while a DDR-RAM delivers up to 80GB/s.

As opposed to its predecessor, codenamed Knights Corner,
the KNL instruction set is based on standard x86 ISA and
the compiled code is therefore binary compatible to all x86
architectures. The peak performance of the KNL is 6 TFLOPS
for single precision and 3 TFLOPS for double precision
floating point arithmetics, which can be achieved when using
fused-multiply-add (FMA) instructions exclusively.

B. Intel Xeon Platinum 8170 (Skylake)

Since the latest generation of Xeon Phi platforms is binary
compatible to x86, it is possible to compare performance
of the same code base on different hardware platforms. We
therefore chose a recent Intel Xeon Platinum 8170 processor,
codenamed Skylake, as a reference. It is a 26 core CPU with
up to two threads per core, running at 2.1 GHz. It also
supports the AVX-512 instruction set. Skylake has an attached
35.75MB L3 cache and three Ultra Path Interconnect (UPI)
links between the processors.

V. OPTIMIZATION TECHNIQUES

A. KNL Hardware Configuration

KNL offers different clustering modes to tune memory
organization to an application’s needs. Cores and attached
MDCRAM are grouped into logical Non-Uniform Memory
Access (NUMA) units and the user can chose between all-
to-all, quadrant, hemisphere and sub-NUMA cluster config-
urations. The all-to-all mode is recommended for debugging
purposes only [19].

Since the RICH algorithm is a streaming problem, where
photons can be buffered temporarily, high bandwidth is more
important than low latency. It is therefore not necessary to use
sub-NUMA clusters for manual latency tuning. This leaves the
choice between hemisphere and quadrant mode, where sets of
tiles are divided into clusters of two or four, respectively. To
optimize for high bandwidth, photon data must be located in
HBM instead of DRAM. In quadrant mode, for example, the
latency of accessing the HBM is about 10 % higher than when
accessing the DRAM, but the bandwidth of the HBM is about
seven times higher. Also, data can be held spatially local in
smaller groups in this setup. Hence the latency of L2 cache
misses is shorter due to a shorter worst case path [1].

We therefore configured the KNL in quadrant mode with
MCDRAM in flat mode, and pinned the execution of the
program to MCDRAM, so that the photon data was located
in this HBM instead of DRAM.

B. Memory Layout

For each photon, we store three times three floats, i.e. the x,
y, and z values of the emission point E, the center of curvature
C, and the detection point D, as well as the radius R. In
addition to these 40 Bytes, we store the calculated output, i.e.
the x, y, and z coordinates of the spherical reflection point M ,
which results in a total of 52 Bytes per photon.



The current production code utilizes Array of Structures
(AoS) to store photon data. To enable contiguous memory
access patterns, we therefore transformed the data layout to
Structure of Arrays (SoA). It is now possible to access the
same input data of several photons without gather/scatter
operations. We did not tested more complex intermediate
layouts such as tiled-AoS [11].

Furthermore, the compiler does not align data to
cache line boundaries per default. Therefore, unaligned
load and store instructions are used. To avoid these
unaligned memory accesses, we directed the compiler
to align data structures on cache line boundaries via
__attribute__((__aligned__(64))) and used
aligned allocators only.

C. Algorithm Adjustments

1) Replacing the quaternion with a rotation matrix: In
the production RICH code, quaternions are used for vector
rotations. The implementation of one quaternion includes
several layers of C++ abstractions and is deeply entangled
with the CERN HEP data processing framework Gaudi [4].

L =

 0 nz −ny
−nz 0 nx
ny −nx 0


M = ~e ·

(
I +

sin(β)

|~n|
+

1− cos(β)

|~n|2
L2

)
where ~n =

~e · ~d
|~e · ~d|

(2)

The quaternion function expects an angle β and a vector as
parameters. Internally the function then calculates sinβ and
cosβ to perform the actual rotation. Since we already have
sinβ from the polynomial solving stage, we decided to replace
this library function with our own rotation matrix, where
instead of the implicit cos (arcsin (sinβ)) we can use the
previous result directly and replace cosβ with its trigonometric
equivalent:

√
1− sin2β. In this manner, three trigonometric

functions were replaces by a square root, a subtraction and a
multiplication, which reduces the number of executed micro-
operations to three (see [8]).

To reduce the number of divisions performed to normalize
the vector, the reciprocal of the norm was calculated in
advance, so that afterwards each vector could be normalized
with one multiplication, which takes only one micro-operation
to perform instead of the 18 ops a division would take [8].

2) Replacing the quartic solver with Newton-Raphson: If
the general form of a function is known, instead of solving a
quartic equation, it is also possible to find the function root
in a restricted range of function arguments by using iterative
approximation. The computationally intensive quartic solver
including a cubic root could be replaced with an iterative
method like Newton-Raphson. The geometry of the problem
puts certain constraints on the quartic equation, which allows
us to always end up with the correct of the four possible roots

and ensures that this solution is not complex. The possible
emission angles between 0 and 60 constrain the value of
sin(β) to between 0 and 0.5. Furthermore, the function is
monotonically increasing within this interval, which ensures
the stability of Newton-Rhapson.

Starting in the middle of the possible interval, single float
precision can be reached already after four iterations.

We chose to implement Newton as specific case of House-
holder using Horner’s method. The algorithm is described in
[15]. There, the values of r0, r1 are calculated as follows:

ri = di

 n∑
j=0

(aj · xj)

 /dxi (3)

Here, n is the degree and aj are the coefficients of the poly-
nomial. Newton-Raphson requires an order of one, therefore
i ∈ 0, 1. The next iteration of x is calculated as follows:

x = x− g · r0
r1

(4)

Since this routine should also work with vectorization,
it is important to keep the number of iterations constant
to not introduce unnecessary branching. The factor g was
introduced to increase convergence speed for the cases where
the root is far away from the initial value. This value was
determined experimentally to be 1.04 and approaches the
needed resolution with one iteration less for far off starting
values. At the same time it slightly decreases convergence
speed for closer starting values, but not more than bad starting
points.

While in the monomial form of a polynomial of degree
n, we need at most n additions and 2n − 1 multiplications,
using Horner’s method we can reduce it to n additions and n
multiplications [14]. The compiler can unroll the constant size
for loops, which results in a branch-free code that is optimized
for the grade of the polynomial. Furthermore, using Horner in
conjunction with Householder makes the code FMA-friendly
and improves processing speed for the root approximation.

While Householder of a higher order in conjunction with
Horner would have been a possible candidate for the imple-
mentation with the better convergence rate [15], this method
resulted in more calculations and floating point overflows, so
that we favored Newton-Raphson.

D. SIMD implementation

To exploit the application’s data level parallelism, the code
was transformed to efficiently utilize the Single Instruction
Multiple Data (SIMD) hardware extensions in the VPUs. The
Xeon Phi supports the AVX-512 instruction set, and by using
512 bit wide registers, it is thus possible to process 16 single
precision floating point numbers in parallel.

Furthermore, hardware scatter/gather operations were added
in this latest SIMD ISA, as well as approximate exponential
and reciprocal functions. These are of special interest for
physics applications, where instructions such as sqrt or div
are used often. If they can tolerate a certain approximation



Instruction µops Reciprocal Throughput
VSQRTPS 18 16
VRSQRT14PS 1 3
VDIVPS 18 32
VRCP28PS 1 3

TABLE I: Micro-operations and throughput for reciprocal
sqrt and div functions on KNL [8]

error, using these instructions results in significantly less cycles
and hence a substantial speedup can be achieved.

Efficiently utilizing SIMD hardware is still challenging,
however, and the right programming model has to be chosen
carefully based on the individual application [17]. Campora et
al. therefore evaluated the C vector libraries Vc [12], Vector
Class Library (VCL) [2], as well as gcc and Intel intrinsics.
Based on perfomance, scalability, readability and maintain-
ability, they rated each programming model for the LHCb
reconstruction software use case [16]. Since both intrinsic
options are compiler and architecture dependent, the choice
was narrowed down to the Vc and VCL language libraries.
While both exhibit similar performance, Vc is not geared
towards vertical vectorization, which makes it less readable.
Hence, Agner Fog’s VCL is the library of choice. It provides
an abstraction layer to the underlying hardware intrinsics, sup-
ports AVX-512, and when a function is not directly supported
in hardware, it implements its own optimized version with
available intrinsics.

With VCL, utilizing approximate functions in the
Cherenkov angle calculation is done by replacing
div() with approx_recipr() and sqrt() with
approx_recipr(approx_rsqrt()), respectively. The
micro-operations and throughput for the regular and reciprocal
versions of sqrt and div are listed in Table I.

E. OpenMP

Besides data level parallelism, we need to exploit thread
level parallelism to take advantage of KNL’s 64 cores. For this
purpose, we used the OpenMP framework for straight-forward
multi-threaded execution, where the number of OpenMP
threads and work group size could be set via command line.
Due to the embarrassingly parallel nature of the problem, a
parallel for loop over the input stream of photons was sufficient
to parallelize the program.

One tunable parameter is the work group size and schedul-
ing strategy. If dynamic scheduling is chosen, the OpenMP
runtime determines the work group size automatically using
the number of loop iterations and threads to be used. If static
scheduling is selected, the scheduling order is determined at
compile time and the programmer can chose the work group
size manually. If the work group size is too small, it results in
more OpenMP overhead from spawning and syncing threads.
If the work group size is too big, the overall process can be
stalled waiting for one slow thread to finish. To keep OpenMP
overhead to a minimum, we subdivided the input stream in
appropriately-sized chunks and set a static scheduler for the
parallel for loop.

Code Version tphoton Speedup
Baseline 1000.26 ns -
Baseline + OpenMP 7.13 ns 1.00

Baseline + OpenMP + ...
Pinned to MCDRAM 6.63 ns 1.07x
Algorithmic adjustments 4.67 ns 1.53x
Vectorization + Mem. alignment 0.93 ns 7.64x
All of the above 0.196 ns 36.47x
Algorithm + Vectorization 0.83 ns 8.55x
Algorithm + MCDRAM 4.30 ns 1.66x
Vectorization + MCDRAM 2.04 ns 3.49x

TABLE II: Photon processing times and resulting speedups
after code optimization

We chose static scheduling, because the number of photons
is known in the beginning and the work does not contain
branches, so the work to be done by each thread is known
at compile time and all work packets need the same time to
finish.

VI. EXPERIMENTAL RESULTS

A. Measurement Setup

To measure the impact of our different optimization tech-
niques, it was crucial to define a workload large enough that
no threads will be idle during execution. As an estimate for the
number of photons processed in parallel, we used the formula

photonspex = vectorsize · workgroupsize · threads
= 16 · 1024 · (64 · 4) photons
= 222 photons

To process a small stream of data, this number was multiplied
with a factor of eight, resulting in an input workload size of

nphotons = 222 · 23 photons
= 225 photons = 33554432 photons

This data size fits well into an integer sized multiple of cache
lines and is sufficient to ensure that all threads have enough
data to process.

The processing time per photon was measured by taking
the high resolution clock provided by chrono. A time stamp
was taken before processing the OpenMP parallel_for-
loops, i.e. before OpenMP’s thread scheduling. The measured
time therefore includes the associated overhead. To obtain the
processing time per photon, the measured time was divided by
the number of performed iterations and calculated photons:

tphoton =
tall

niter · nphotons
B. Overview of Results

A summary of the photon processing times and speedups
after applying aforementioned code optimizations is presented
in Table II.

Compared to the scalar code version running on a single
core, using all available hyperthreads with OpenMP yields a
speedup of ≈ 143. The resulting processing time tphoton =
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Fig. 3: Strong scaling speedup (left) and efficiency (right) for 1 · 107 (KNL, OMP work group size 128) and 4 · 103 photons
(Skylake, OMP work group size 1024)

7.13 ns is taken as a baseline to compare all further opti-
mization techniques, since they were applied to this OpenMP-
enhanced code base.

Pinning the algorithm’s processing data to MCDRAM im-
proves the processing time by a mere 7%. Applying this tech-
nique only, memory accesses are sped up, but the algorithm is
still compute bound and cannot exploit the higher bandwidth.

Changing the math of the algorithm results in less cycles
to perform the same calculations, and this alone yields a
speedup of 1.53x. The biggest improvement is achieved after
vectorizing the code and applying memory alignment restric-
tions. The processing time is reduced by a factor of 7.64x,
which is comparable to the results achieved on our Xeon
reference machine (7.7x); in conjunction with the algorithmic
adjustments, the code runs 8.55x faster.

With these two modifications, the code is no longer compute
bound, but memory bound. If we now pin the program data
to the faster MCDRAM instead of using DRAM, a significant
overall speedup of 36.47x is achieved. The processing time
per photon has been reduced to tphoton = 0.196 ns

Based on the MCDRAM specifications, we can calculate
the theoretical minimal processing time per photon to assess
the quality of our code optimization. According to the hard-
ware specification, the MCDRAM’s bandwidth is limited at
340 GB/s. Taking the photon’s data structure size of 52 B
into account, the minimal photon processing time equates to

tmin =
data size

BWMCDRAM
=

52B

340 GB/s

= 0.153 ns

Hence, using OpenMP for thread scheduling, MCDRAM, al-
gorithmic and mathematical improvements, and vectorization,
we are able to process one photon in 0.195ns, which is 28%
below the theoretical limit for memory bound problems.

C. Multithreading Efficiency

Fig. 3 shows speedup and efficiency. The speedup is cal-
culated by dividing the time the calculation takes using one
OpenMP thread by the time it takes using n threads (see Eq.
5). The efficiency is the speedup divided by the number of
threads n.

speedup =
t1thread
tnthreads

(5)

In the efficiency plot in Figure 3 it can be seen that the
efficiency is a plateau with an increasing number of threads
unless the thread number is in vicinity of multiples of the 64
physical cores for the KNL and multiples of the 26 cores for
the Skylake CPU, where we see a sudden drop in efficiency.
The efficiency is worse for the Skylake than for the KNL,
where the efficiency drops already by 0.4 between using one
and 25 threads.

An ideal speedup based on Amdahl’s law is shown as a
red dashed line in Figure 3. When using multiple threads,
thread scheduling and management introduces an overhead
which diminishes the speedup.

At 52 threads, the Skylake has an efficiency of about
35%, while the KNL reaches an efficiency of 80% for the
maximum number of hardware threads it supports. With every
additional hyperthread used, the speedup graph drops by
around 10. The inclination is 1 for the KNL up until around 50
threads, and about 0.6 starting from 100 threads for the KNL.
The degradation can be justified with the limited hardware
resources of a core, which have to be used by all hyperthreads
simultaneously.

D. OpenMP

In Figure 4 we can see the OpenMP overhead distributed
over the number of OpenMP threads used for calculation. The
overhead in nanoseconds is calculated as follows, where t1 is
the runtime per photon using one thread, and tn is the time
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needed to calculate the reflection point for one photon using
n OpenMP threads [13]:

Toverhead = n · Tnthreads − T1 (6)

The overhead was measured until 64 cores, because after
that hyperthreads are used, which leads to additional hardware
scheduling overhead and resource scheduling allocation which
OpenMP does not account for. The absolute Skylake OpenMP
overhead per photon increases, while for the KNL the overhead
stays approximately constant.

With perfect scaling, the overhead would be negligible.
The overall overhead for the Skylake increases linear by
approximately 0.7 ns per thread added. The increase of overall
overhead for the KNL remains at 0.13 ns per thread added.

E. Accuracy Requirements

The detector has a length of approximately 1 m and
a resolution of 0.58 · 10−3 rad. A photon emitted at the
furthest distance from the mirror will have an uncertainty of
1 m · 0.58 · 10−3 rad ≈ 0.06 mm in its reflection point
on the mirror. Ensuring a numeric precision that is higher
than 0.06 mm means that the detector resolution remains
the dominant source of error. Consequently, the approximated
functions introduced during code optimization do not impact
overall results.

To verify the precision of the new implementation of the
quartic solver, a Python version of the code was created
based on the C++ code version. Using the Python module
mpmath, the mantissa bits for the floating point numbers
can be specified. The Python version was run with varying
mantissa bits and performed with 10000 photons per mantissa
size as input to the algorithm. The numeric resolution over this
range of mantissa bits is plotted in Fig. 5. The L2-distance
between the values is calculated using double precision (53
mantissa bits) and compared to the value calculated with less
mantissa bits, where single precision (24 mantissa bits) and
half floats (11 bits in mantissa) are marked explicitly. The
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Fig. 5: Precision error based on mantissa size; shaded area
shows error range, black line represents minimum required
precision)

distance between two points was calculated using the L2 norm
of the distance:

d(~a,~b) =
√
(|xa − xb|2 + |ya − yb|2 + |za − zb|2) (7)

As can be seen in the figure, a mantissa size of 21 is
sufficient to meet the precision requirements. In other words,
the error inferred into the lower bits of the mantissa by using
approximate functions does not impact the overall quality
of the results, whose error can be significantly larger due
to measurement inaccuracies. With the given RICH detector
precision, it is thus neither necessary to use double precision
values, nor does the use of approximated functions introduce
critical error.

F. Performance Outlook after System Upgrade

In 2018, the LHCb hardware will be upgraded. After the
upgrade, data must be processed after each collision. Each
collision produces 130 kB of data at a frequency of 40MHz,
which results in an overall bandwidth of 130 kB ·40MHz =
5.2 TB/s = 40 Tbit/s. Using the software trigger, which the
Cherenkov pattern recognition algorithm is part of, it is scaled
down to 2− 5 GB/s, which will be stored to hard drives.

In one collision event, around 50 tracks with 200 photons
are registered, summing up to 104 photons per event. Assum-
ing 52 B per photon, one KNL needs to process photons with
a minimum bandwidth of 104 · 40 MHz · 52 B = 20 TB/s.
Using the MCDRAM with a bandwidth of 340 GB/s, we
would need 20 TB/s

340 GB/s ≈ 59 KNLs to supply the required
bandwidth. Using data pools, each photon can be described
in 32 B, so that we would need 104·40 MHz·32 B

340 GB/s ≈ 38 KNLs
to handle the minimum bandwidth.

With the presented code improvements, photons can be
processed on the KNL at a frequency of 1

0.195 ns = 5.13 GHz.
Each photon can be processed in 0.195ns, so that we would
need 104 · 40MHz · 0.195 ns = 78 KNLs to compute all the
photon emission angles, although the memory could deliver
data even faster.



VII. CONCLUSIONS

In this paper, the hotspot of the RICH particle detection al-
gorithm was analyzed and ported to an Intel Xeon Phi Knights
Landing platform. For the Cherenkov angle reconstructions,
photon data processing exhibits parallelism on multiple layers
that can be exploited well with a manycore architecture.
Multithreading was applied using the OpenMP framework,
which spawns threads and distributes the work equally over
all threads.

Due to the compute intense nature of the algorithm, the
baseline production code was compute bound. Applying vec-
torization, data structure transformations and memory align-
ment restrictions increased the performance by a factor of
7.65x. The algorithm itself was improved mathematically,
as slow trigonometric functions were replaced and efficient
approximate instructions were introduced. Also, the Newton-
Raphson method was used to determine the root of the polyno-
mial instead of solving a quartic equation. Our analysis shows
that the precision after the changes is within the acceptable
error range. These additional changes increased the speedup
to 8.55x and the problem became memory bound.

As a consequence, the data structure layout was changed
from AoS to SoA, alignment restrictions were enforced and
the processed data was pinned to KNL’s MCDRAM during
exection.

Combining all of these techniques, a speedup of 36.47x
compared to production code was achieved for the Cherenkov
angle calculation. Assessing the maximum available memory
bandwidth, the improved code is merely 28% below the the-
oretical limit. We thus showed that a high speedup is feasible
for HEP code using current vectorization and parallelization
techniques.
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