
Portable Cost Modeling for Auto-Vectorizers
Angela Pohl, Biagio Cosenza and Ben Juurlink

Embedded Systems Architecture
Technische Universität Berlin

Berlin, Germany
{angela.pohl, cosenza}@tu-berlin.de

Abstract—Compiler optimization passes employ cost models
to determine if a code transformation will yield performance
improvements. When this assessment is inaccurate, compilers
apply transformations that are not beneficial, or refrain from
applying ones that would have improved the code. We analyze
the accuracy of the cost models used in LLVM’s and GCC’s
vectorization passes for two different instruction set architectures.
In general, speedup is over-estimated, resulting in mispredictions
and a weak to medium correlation between predicted and actual
performance gain. We therefore propose a novel cost model
that is based on a code’s intermediate representation with
refined memory access pattern features. Using linear regression
techniques, this platform independent model is fitted to an AVX2
and a NEON hardware. Results show that the fitted model
significantly improves the correlation between predicted and
measured speedup (AVX2: +52% for training data, +13% for
validation data), as well as the number of mispredictions (NEON:
-15 for training data, -12 for validation data) for more than 80
code patterns.

I. INTRODUCTION

Optimizing compilers identify code transformations that
improve a program in regard to a given goal, e.g. higher
performance, lower energy consumption, or smaller memory
usage. However, code transformations are not always benefi-
cial and it is therefore important to understand if they may
infer severe overheads. For this reason, modern compilers,
such as GCC and LLVM, typically perform a profit analysis to
determine whether a transformation is beneficial, i.e. yielding
an improvement over to the code’s baseline version.

An accurate profitability analysis is particularly important
for vectorization. Auto-vectorizers work on either loops or
basic blocks, trying to group together multiple instructions
in order to replace them with a vectorial one. This process
requires code transformations such as instruction replacement
or code re-writing, and it can introduce expensive overheads,
e.g. because of complex memory access patterns or vector
shuffling.

State-of-the-art compilers use a cost model to understand
whether applying vectorization is beneficial. However, such
cost models are relatively simple: the cost is determined on
individual instruction level, and the cost of a transformed
block is the sum of all of its individual instruction costs
(Section III explains these algorithms in detail). We have
assessed the accuracy of the vectorization cost models of GCC
and LLVM on the TSVC benchmark [1], on an Intel Xeon
E5-2697 with AVX2 SIMD hardware extensions and on an
ARMv8 CortexA-53 with a NEON SIMD unit. Experimental

results show that: (a) existing vectorization cost models are
only weakly or moderately correlated with the actual cost; (b)
there are mispredicted codes where the error in cost modeling
results in wrong choices, i.e. either in vectorization with
slowdowns (false positives) or cases where vectorization would
have been beneficial but it is not applied (false negatives);
(c) mispredictions have an impact on the final performance
in terms of execution time. Therefore, the heuristics used by
today’s production compilers are not sufficiently accurate.

The design of an accurate vectorization cost model is
challenging for several reasons. First, an accurate cost model
should consider those code features (e.g. instruction patterns)
that impact the performance of the vectorized code. For exam-
ple, it should explicitly distinguish whether memory accesses
are interleaved, reversed or scalarized, as these patterns have
a different impact on the speedup of the generated code.
Secondly, typical vectorization benchmarks are not build for
accurate cost modeling: while they focus on diverse vector-
ization cases, they do not cover a variety of cost modeling
patterns. For example, the whole TSVC benchmark (151
loops) contains only two reversed loops. Finally, approaches
should be portable between the different SIMD instruction set
architectures (ISAs).

Based on these insights, we propose a novel modeling
methodology that increases the accuracy of auto-vectorizers’
cost models. Our approach models the cost using a machine
learning technique with accurate code feature representation,
fitted on speedup, and using extended training data. It does
not depend on a specific SIMD instruction set and can be
easily ported to any target hardware. The resulting cost model
can be implemented as a pluggable extension to the LLVM
cost model, and can be used by all of the compiler’s auto-
vectorizers.

We make the following contributions:
• An analysis of the accuracy of the cost models of GCC

and LLVM’s auto-vectorizers perfomed on the TSVC
benchmark on two different SIMD ISAs (AVX2 and
NEON), which shows the correlation between predicted
and actual speedup, the number of mispredictions, and
their impact on performance.

• A new portable cost model which improves state-of-the-
art auto-vectorizers on both AVX2 and NEON in terms
of cost prediction correlation, number of mispredictions
and execution time. The proposed model predicts the
speedup of a vectorized code based on an accurate code

feature representation, carefully tuned regression analysis,
and an extended training data. Results are cross-validated
on TSVC and selected Polybench loops, and fitted with
different fitting techniques.

• An accurate feature analysis characterization based on
both error- and model-based techniques that highlights
the portability of the model by showing how different
target-dependent code features are exploited on multiple
SIMD ISAs.

The paper is organized as follows: Section II provides an
overview of related work in the area of cost modeling in com-
pilers. Existing cost models and their experimental assessment
are described, respectively, in Section III and IV. Section V
describes the different components of our proposed model. Ex-
perimental results showing cost model fitting, feature analysis,
and improvement on cost prediction correlation, misprediction
and performance impact, are presented in Section VI. The
paper concludes in Section VII.

II. RELATED WORK

Automatic vectorization has been extensively studied in
literature [2], [3], and multiple techniques have been proposed
that exploit vectorial parallelism either at loop level (LLV) or
on straight-line code (SLP). This section focuses on related
work that investigates the cost modeling of those techniques,
rather than the proposed vectorization algorithms.

The ability to decide if vectorization is profitable is an
important part of modern optimizing compilers. Code trans-
formation techniques such as loop distribution and interchange
[3] or if-conversion [4] can positively impact the profitability
of vectorization, and it is therefore critical to provide an
accurate cost model that correctly predicts whether overheads
overcome the benefit of vectorization. Wu et al. [5] recognized
the importance of correctly deciding when SIMDization is
profitable in the XL compiler. Yuanyuan and Rongcai [6] have
proposed an analytical cost model for the Open64 compiler,
which, however, shows many cases where it cannot evaluate
the right cost. Nuzman et al. [7] proposed a cost model for
vectorization of strided-accesses; however, it does not consider
other overheads or patterns.

Polyhedral compilers often include loop vectorization as
part of a broader loop optimization framework. Bondhugula et
al. [8] applied inner-loop vectorization after a tiling heuristic
and selected the inner loops interchange transformation that is
vectorizable; however, their method does not consider vector-
ization overheads. A polyhedral vectorization cost-model has
been introduced by Trifunovic et al. [9]: their approach focuses
on scheduling metrics, but does not cover code generation
dependent metrics exploited in this work.

Machine learning models have gained interest in the com-
piler community and have been used to define vectorization
cost model as well. Stock et al. [10] introduced a machine
learning approach to improve automatic vectorization of tensor
contraction kernels and stencil computations. Their cost model
assists the generation of vectorized code by selecting the
one with the best performance, after applying permutation

and unroll-and-jam. It operates on assembly code and is not
portable to non-Intel architecture; instead, our model is based
on features extracted from LLVM’s bitcode, and its portability
is shown on both Intel AVX2 and ARM NEOM ISAs. Park
et al. [11], [12] used a model based on logistic regression
and support vector machine to narrow the set of candidate
polyhedral loop optimizations, including vectorization; their
approach is based on iterative search and, in contrast with
our fully static approach, requires to execute the transformed
variants on the target machine. Trouvé et al. [13] formulated
vectorization profitability as a classification problem, predicted
using a support vector machine (SVM). They also used a
similar classification model to predict a compiler’s command-
line options that choose the most profitable vectorization in
tensor contraction kernels [14]. Their SVM model is based on
only twelve features (six extracted from the abstract syntax
tree, six from the intermediate representation), resulting in
a high number of mispredictions. In contrast, our approach
defines 72 code features, including those that distinguish
different memory access patterns.

Cost modeling is also critical in the context of straight-
line code vectorization. Two examples are: realignment and
data-reuse considered together with loop unrolling [15], and
Throttled SLP (TSLP) [16], a SLP model that forces vector-
ization to stop earlier whenever this is beneficial, therefore
overcoming the limits of standard greedy algorithms.

III. COST MODELING IN AUTO-VECTORIZERS

In this section, we provide an overview of the cur-
rently implemented cost models in LLVM’s and GCC’s auto-
vectorizers.

A. Cost Modeling in LLVM

The LLVM compiler applies multiple vectorization passes
to the code, i.e. Loop Level Vectorization (LLV) and Su-
perword Level Parallelism (SLP); the optional Basic Block
(BB) vectorizer has been deprecated in the latest compiler
versions. Both of the active passes use a similar approach to
assess the cost of a vectorization. They determine the block
cost of the transformed loop body or basic block (BB) and
compare it to the scalar block cost. For this purpose, a cost
is assigned to each instruction, based on the instruction type,
the underlying hardware platform and the vectorization factor
(VF). The vectorization factor denotes the maximum number
of elements that fit into one vector, e.g. VF = 8 for single
precision floating point numbers and a vector width of 256
bit. In the compiler, there are lookup tables for a variety
of instruction set architectures and SIMD extensions defining
these individual instruction costs. This block cost analysis is
then performed for all possible vectorization factors. Since the
same vectorization factor is applied to all instructions in one
BB, the maximum possible vectorization factor is derived from
the largest data type loaded/stored in the BB. Afterwards the
minimum cost is chosen. If this minimum is the scalar block
cost, no vectorization is applied, although other optimization
techniques, such as unroll-and-jam, might be performed. The

cmin = cscalar
V Fmin = 1
for all Vectorization Factors do

for all BBs in Loop do
for all Instructions in BB do

cbb+ = getInstrCost(Instr, V F)
end for
cvec+ = cbb

end for
if (cvec < cmin) then

cmin = cvec
V Fmin = V F

end if
end for
return cmin, V Fmin

Fig. 1. Pseudo-Code of LLV’s cost calculation in LLVM

complete algorithm is shown in pseudo-code in Figure 1. To
take overhead inferred by vectorization into account, a loop
trip count threshold is added to avoid vectorization of ”tiny”
loops (trip count ¡ 16). For such tiny loops, vectorization is
allowed only if no overhead is added outside of the loop.

Despite both passes using the same underlying lookup
tables, their cost estimation varies due to slight differences
in their respective lookup functions. For example, one pass
assigns individual costs to the getelementptr instruc-
tion, while another merges this cost with the load /store
instructions’ costs. In addition, all passes use a different
baseline, i.e. scalar block cost, to assess the transformation
benefit. The results of the passes’ cost analysis therefore
cannot be compared. It is also possible that one pass deems a
transformation beneficial, while another may not. An analysis
which of these slightly varying cost models is more accurate,
has not been performed yet.

B. Cost Modeling in GCC

The GCC vectorizer combines SLP and LLV vectorization
in one compiler pass [17]. This pass utilizes a similar approach
to cost modeling as described for LLVM. It also determines
a BB’s cost based on its individual instruction costs and the
vectorization factor. However, it also accounts for vectorization
overhead outside of a loop body. As the overhead, such as a
scalar loop tail, becomes less significant in terms of cost with
increasing loop iterations, the cost model tries to solve the
following inequation to determine the minimum number of
profitable loop iterations n:

n · cscalar + cs,out > (n− nout) ·
cvec
V F

+ cv,out

When a number of loop iterations n can be found where the
cost of the vectorized code cvec and the overhead outside of
the loop cv,out is less than the scalar cost cscalar and the
scalar overhead cs,out, the loop is vectorized. In addition, a
runtime check is added to avoid execution when the number
of loop iteration is smaller than n. This has the side effect
that vectorization is possible even for small iteration counts.
If the inequation cannot be solved, the loop is deemed to be
unvectorizable. The underlying cost prediction thus impacts

the decision to vectorize a loop, as well as the minimum
number of profitable iterations.

IV. BASELINE ACCURACY ANALYSIS

The lookup tables used to determine cost in LLVM and GCC
are based on latency and/or throughput numbers of individual
instructions. However, cost is considered an abstract value
in a sense that it does not translate into code performance
directly, but must be interpreted relative to other cost values.
The accuracy of these cost relations, i.e. the predicted speedup,
has not yet been studied.

A. Setup

In this analysis, we compared speedups estimated by the
compilers with actual measured speedups of the TSVC bench-
mark [1]. The benchmark consists of 151 loop patterns that test
different vectorization challenges, such as dependence testing,
statement reordering, or control flow. Contrary to other popular
benchmarks, the TSVC kernels typically incorporate only one
loop or one set of nested loops. This allows us to attribute a
kernel’s speedup directly to the speedup of its innermost loop,
without further code instrumentation or annotation. To get
accurate measurements of the vectorization only, further loop
optimizations, such as interleaving and automatic unrolling,
were disabled. The first test hardware is an Intel E5-2697
processor with AVX2 extensions, which corresponds to a
vectorization factor of 8 for single precision floating point
calculations. The second hardware is an ARMv8 CortexA-
53 with 128-bit NEON extensions, which corresponds to a
vectorization factor of 4 for single precision floating point
numbers. For compilation, we used Clang/LLVM 6.0 and GCC
8.2.0, and build three different code versions:

• scalar: all optimizations are turned on, except for the
vectorizers

• vectorized: all optimizations are turned on, including the
vectorizers

• forced vectorization: all optimizations are turned on,
inlcluding the vectorizers. Furthermore, the cost model
is either set to unlimited (GCC) or all instruction costs
are forced to 1 (LLVM).

The vectorized code includes all loops where the compiler
deemed the vectorization to be beneficial. This incorporates
patterns that do not exhibit any speedups or even slowdowns,
so called false positives (f⊕).

The forced vectorization adds patterns where the compiler
previously did not apply vectorization due to the cost model
predicting no benefit. This includes patterns that would have
shown a speedup, so called false negatives (f).

Running the testbench provides the measured speedup
Smeas for each loop kernel by calculating

Smeas =
tscalar
tvec

,

where tvec can be the result of regular or forced vectorization.
To account for measurement inaccuracies, we imposed a 5%

AVX2

LLVM GCC

Set Size 85 65
ρ 0.58 0.33

L2
avg 0.28 0.48

L2
max 4.58 6.30

f⊕ 4 2
f	 9 0

tscl 85.00 65.00
tvec 53.53 33.16
topt 51.79 32.53

NEON

LLVM GCC

Set Size 71 66
ρ 0.75 0.48

L2
avg 0.26 0.21

L2
max 4.41 3.38

f⊕ 0 0
f	 17 2

tscl 71.00 66.00
tvec 40.34 31.83
topt 36.54 31.03

2 4 6 8

2

4

6

8

1

1

ρ = 1

Sest

Smeas

LLVM

ρ = 0.58

2 4 6 8

2

4

6

8

1

1

ρ = 1

Sest

Smeas

GCC

ρ = 0.33

2 4 6

2

4

6

1

1

ρ = 1

Sest

Smeas

LLVM

ρ = 0.75

2 4 6

2

4

6

1

1

ρ = 1

Sest

Smeas

GCC

ρ = 0.48

Fig. 2. Analysis results for LLVM and GCC loop level vectorization passes for the TSVC benchmark; shaded areas mark false positive and false negative
predictions, straight line marks perfect positive correlation of ρ = 1

threshold, i.e. kernel slowdowns are classified as Smeas <
0.95, while kernel speedups are classified Smeas > 1.05

To obtain the speedup estimated in the compiler Sest, we
analyzed the vectorization reports. The detailed reports provide
the scalar loop body cost cscalar, as well as the vectorized loop
body cost cvec. The predicted speedup can thus be derived as

Sest =
cscalar
cvec

As described in the previous section, GCC also accounts for
outside loop costs, i.e. prologue and epilogue cost, that have
to be added to the loop body cost. This applies to scalar and
vectorized loops. For large iteration counts, however, the cost
calculation converges to the formula above, which is the case
for the TSVC benchmark.

With the estimated and measured speedup, it is now pos-
sible to determine a correlation between the two quantities.
Ideally, Sest = Smeas, which corresponds to a perfect linear
correlation of ρ = 1 for the complete dataset.

For our results, we determined the estimated and measured
speedups for LLVM’s LLV pass, as well as GCC’s vectorizer.
We omitted LLVM’s SLP pass due to the loop based kernels in
our benchmark, which are not suitable for SLP vectorization.

In fact, only three kernels out of the 151 are vectorizable
with SLP by both compilers. We then removed those kernels
from the analysis where the cost model was not used. This
applies to codes where optimization techniques such as pattern
substitution or reductions are applied; in these cases, vectori-
zation is always deemed beneficial and no further assessments
are performed. After further removing identical kernels, the
evaluated dataset consisted of 85 kernels for LLVM and 65
kernels for GCC on the AVX2 platform, as well as 71 kernels
for LLVM and 66 kernels for GCC on the NEON platform.

B. Results

The results for the analyzed kernels are displayed in Figure
2. In these scatter plots, each plot point corresponds to one
of TSVC’s analyzed kernels. Shaded areas either mark false
positives (f⊕ : Sest > 1, Smeas < 0.95) or false negatives
(f	 : Sest < 1, Smeas > 1.05), while the straight line
indicates the perfect positive correlation of ρ = 1.

Both compilers tend to overestimate the speedup gain. On
the AVX2 platform, this results in moderate-to-weak corre-
lations of ρ = 0.58 (LLVM) and ρ = 0.33 (GCC). LLVM
estimates a speedup of around 6x for a large number of kernels,

while GCC estimates speedups to range between 6x-8x. The
measured speedups, on the other hand, typically range between
1x-3x for both compilers.

On the NEON platform, correlations are higher with ρ =
0.75 for LLVM and ρ = 0.48 for GCC. As can be seen in the
plots, both compilers show distinct clusters in their respec-
tive performance prediction, resulting in a clear classification
whether to vectorize or not. This is due to the assumption
that the majority of kernels scales perfectly (Sest = V F) or
even exhibits super-linear speedups (Sest > V F). However,
measured speedups are in the same range as on the AVX2
platform, i.e. between 1x-3x.

For all vectorization passes, the over-estimations of speedup
imply that there is no or little penalty added in the cost
calculation for vectorization. As an example, LLVM tends
to assume perfect scaling of memory operations, i.e. the
load/store costs are the same for scalar and vectorized code.
With vectorization, however, the memory bandwidth demand
grows, including a kernel becoming memory bounded due to
vectorization. Such side effects as in this example cannot be
modeled with today’s cost models, since they only analyze
cost at instruction level, regardless of other code properties
such as arithmetic intensity.

When determining the correlation factor, it must be noted
that its Pearson’s product-moment coefficient is sensitive to
outliers, such as the significantly over-estimated speedups that
fall into the false positive range for LLVM on the AVX2
platform. We therefore calculated the Euclidean distance as
well by determining the L2 norm of the vector difference.
Due to the varying set sizes of vectorized kernels, we then
normalized the distance per kernel to obtain a comparable
value, i.e.

L2
avg =

||Smeas − Sest||
setSize

Our measurements show an average distance of L2
avg = 0.28

for LLVM, while GCC exhibits a higher average distance with
L2
avg = 0.48 on the AVX2 platform. On the NEON hardware,

average distances are L2
avg = 0.25 for LLVM and L2

avg =
0.21 for GCC. Looking at each kernel individually, we see
that maximum distances L2

max range between 4.58 - 6.30 for
AVX2 and 3.38 - 4.41 on NEON. We classified all kernels by
their respective L2 distance values to quantify the distribution
of the error. An overview of all results is presented in the
tables in Figure 2.

In addition to the analysis of the mathematical correlation
and the Euclidean distances, we investigated two other prop-
erties of the cost models: the number of false predictions
and their impact on execution time. For the AVX2 platform,
LLVM predicts 12 codes wrong (f⊕ : 3, f	 : 9), while GCC
does not produce false negatives and exhibits 2 false positives
(f⊕ : 2, f	 : 0). For all compilers, mispredictions are spread
out evenly across TSVC’s code patterns with one exceptions:
on both hardwares, four of LLVM’s f	 predictions are test
patterns with array indirections, i.e. code such as a[i]
= b[c[i]]. Here, speedup is underestimated due to the

scalarized memory loads and shuffle operations that are needed
to create the vectors.

Besides the absolute number of mispredictions, it is also
important to understand their impact, i.e. how much slowdown
is inferred due to a false positive and how much speedup is lost
due to a false negative. For this measurement, we evaluated
the normalized execution time of the kernels before and
after vectorization and compared it to the optimal execution
time. Since all kernels have different run times, they are
normalized to their scalar execution time. All scalar kernels
consequently have an individual run time of one time unit, e.g.
the total normalized scalar execution time tscl = 85.00 for
LLVM on the AVX2 hardware. The total vectorized execution
time tvec is calculated by adding the normalized vectorized
execution times for all vectorized kernels and the normalized
scalar execution times for all other kernels. For example, a
kernel that exhibits a speedup of 4x after vectorization will
contribute 0.25 time units, while a non-vectorized code will
contribute its normalized scalar execution time of 1.0. The
optimal execution time topt can be determined by adding the
normalized execution times of a perfect vectorization, i.e. a
vectorization without mispredictions.

Because of the low number of mispredictions for GCC, the
difference between the vectorized and optimal execution time
is limited for both hardware platforms and ranges between
0.63-0.80 time units. The difference is larger for LLVM due
to the high number of mispredictions, however, and ranges
between 1.74 - 3.8 time units. Especially on the NEON
hardware, performance is lost due to the large number of f	
kernels.

V. IMPROVING THE MODELING

Based on the analysis insights, we sought an improved
method to create more accurate performance predictions. In
this section, we describe the transition from modeling an
abstract cost to predicting individual loop speedup, explain
how the features for the new cost model were chosen and
present enhancements to the existing TSVC benchmark to
ensure sufficient feature coverage.

A. Targeting Speedup Instead of Cost

As described previously, a BB’s vectorized cost cvec is
calculated as the sum of all its individual instruction costs
ci. This vectorized cost cvec is then compared to the block
cost of the scalar code to determine a code transformation’s
profitability. We have used this predicted speedup as the
accuracy measure in the previous analysis section.

Based on this approach, we can model the predicted speedup
directly, instead of the indirect method of determining individ-
ual instruction costs ci from which the speedup will be derived.
As a consequence, rather than calculating

Sest =
cscalar
cvec

=
cscalar∑
nici

with ni denoting the number of occurrences of a specific
instruction type, we model a weight wi that contributes to
the predicted speedup

Sest =
∑

niwi

In this context, wi can be positive, zero, or negative. A
positive weight indicates that an instruction scales well with
vectorization, while a negative weight indicates an added
overhead, i.e. a slowdown.

As an additional refinement, we incorporated a metric for
the block composition into our model. As of today, compilers
look at each instruction cost ci individually, regardless of the
BB’s other instructions. However, code characteristics such
as the arithmetic intensity impact the maximum achieved
speedup. By normalizing the individual instruction counts ni
to the total number of instructions in the BB, we account for
different instruction mixes. The model thus becomes

Sest =
∑ ni∑

n
wi

Our modeling approach has the advantage that it is no longer
tied to a scalar baseline cost cscalar, which can also introduce
error. Especially with the value of a block cost being restricted
by its integer data-type only, small relative errors can result
in large absolute errors. As an example, cvec ∈ (1, 3876)
and cscalar ∈ (0, 170, 068) in GCC for the TSVC benchmark
on the AVX2 platform. Furthermore, confining our dependent
variable, i.e. the target speedup Sest, to an interval of (0, V F)
will help in model fitting later.

An additional benefit of this approach is that it allows
the comparison of different vectorization options. Since the
performance estimation is no longer tied to a certain baseline,
but predicts a block speedup, the results can be compared
to other predictions. As a use case example, our cost model
enables the comparison of LLV and SLP vectorization results
to select the better option, since there are codes where SLP
outperforms LLV in LLVM (e.g. kernel s128).

B. Feature Representation and Extraction

An important aspect of our modeling approach is keeping
the model abstract and hardware agnostic. We therefore chose
to use LLVM’s Intermediate Representation (IR) as a baseline
feature set. In its latest release, the LLVM IR instructions
can be classified into five different categories: terminator
instructions, binary instructions, bitwise binary instructions,
memory instructions, and others. In total, there are 62 instruc-
tion types. To understand if this abstract code representation
is sufficient for speedup modelling, we grouped together all
TSVC code patterns that share the same representation in
LLVM IR and compared the achieved speedups within each
feature group. From this analysis, we were able to see that a
further differentiation for memory operations was needed. For
example, the loops

for (i = 0; i < LEN; i++){
x[i] = y[i] + 1.;

}

and

for (i = LEN-1; i >= 0; i--){
a[i] = b[i] + 1.;

}

share the same representation on IR level. However, speedup
varies by 10% due to the reverse loop iteration. This difference
stems from the fact that for the reverse loop, two half vectors
of b are loaded and assembled instead of the one contiguous
load operation used for y in the loop with the positive stride.
This difference in code generation is not yet visible at IR level,
since it will be performed later in the backend.

We therefore replaced the load and store features
with more fine grain memory access pattern features.
These access patterns were taken from the current cost
model implementation and enable the differentiation be-
tween Unknown, Vector, VecReverse, Interleaved,
Gather/Scatter and Scalarized for both, load and
store accesses. This leaves 72 features to model the code.
Not all of these featues are used to model loops, however.
For example, out of the terminator instruction category, only
the branch instruction is utilized. Nonetheless we decided
to keep all features in our model to preserve the flexibility to
use our cost modeling approach for other optimization passes,
such as SLP vectorization.

C. Enhancing the Training Data

For the initial baseline analysis, the TSVC benchmark was
used to get the vectorization results for over 150 test kernels.
However, when training a model, a great number of different
codes is desirable to ensure a decent feature coverage and
sufficient code variety. This is especially true when trying
to apply machine learning algorithms. In this spirit, a Loop
Repository for Vectorizing Compilers (LORE) [18] has been
created by a consortium of compiler researchers. At the time of
writing, however, these codes were not yet readily accessible.

To enhance the initial dataset of TSVC kernels, we therefore
compiled Polybench [19] and extracted those kernels that
LLVM was able to vectorize with forced compilation. The
extraction was necessary due to the fact that we need single
loops or a single set of nested loops in our kernels. In
Polybench, kernels can have more than one set of (nested)
loops, however.

In total, 14 more kernels were added to the baseline setup.
It results in training dataset of 99 vectorizable kernels on the
AVX2 hardware and 85 vectorizable kernels on the NEON
platform. Overall, the training codes cover a set of 31 features
on AVX2 and 29 features on NEON.

VI. EXPERIMENTAL RESULTS

Having defined all features and an extended training data
set, the model is fitted to two different hardware platforms to
demonstrate the portability of the approach. In this section,
we present the results of the fitted model, including validation
and a detailed feature analysis.

A. Cost Model Fitting

To create platform specific cost models out of our abstract
code representation, we applied different fitting techniques to
determine the most suitable one. With Smeas as the depen-
dent variable and the instruction weights wi as independent
variables, three different approaches were tested:

• Least Squares (LS): This method determines the wi that
minimize the L2 norm ||Smeas − Sest||2.

• Non-negative Least Squares (NNLS): This approach
also minimizes the L2 norm, but imposes an additional
restriction on the resulting wi, as they must not be
negative.

• Support Vector Regression (SVR) with Polynomial
Kernel: For this approximation, a support vector ma-
chine is used for regression instead of classification.
The machine can utilize different kernels, such as linear,
polynomial, or sigmoid kernels to approximate data. In
this experiment, we used polynomial approximation to
understand if a non-linear kernel is more suitable for our
problem than the linear techniques.

All models were fitted using Python’s NumPy, SciPy, and
scikit-learn libraries [20], [21], [22]. For the SVR
implementation, a grid search was conducted to find the
most suitable parameter values for the error range ε, the
error penalty C, and the polynomial degree. The parameter
set with the least number of mispredictions was chosen, i.e.
(C, ε) = (1, 1) and a polynomial degree of 2. All results can
be seen in Figure 3.

Compared to the LLVM baseline in Figure 2, all three fitting
methods were able to reduce the over-estimation of speedup
significantly. However, the SVR fitted model is predicting the
overall average speedup S = 2.01 for all training kernels. It
is therefore not suitable for creating an accurate cost model
and will not be discussed further. The linear fitting methods
are able to increase the correlation from 0.58 to 0.88 (LS,
+52%) and 0.79 (NNLS, + 36%) on the AVX2 platform, and
from 0.75 to 0.88 (LS, + 17%) and 0.80 (NNLS, + 7%) on the
NEON platform. At the same time, L2 distances are decreased
from 25.45 to 8.19 (LS, - 68%) and 10.9 (NNLS, -57%) on
the AVX2 platform, and from 19.48 to 3.54 (LS, -82%) and
4.47 (NNLS, - 77%) on the NEON platform.

The number of mispredictions was reduced as well. On the
AVX2 platform (baseline: f⊕ : 4, f	 : 9), the LS model is
able to reduce both, the number of false positives and false
negatives (f⊕ : 3, f	 : 3). All false positives were also
mispredicted in the baseline model, while the false negative
codes are a completely different set of kernels. The kernel
that was removed from the baseline’s set of false positives is
a kernel with heavy control flow statements (kernel s279) that
the LS model now predicts correctly. As a consequence of the
overall reduction in false predictions, the normalized execution
time decreases from 60.35 to 58.61 time units (-3%).

The NNLS model reduces the overall number of mis-
predictions from 13 to 9 (f⊕ : 9, f	 : 0). However, all
mispredictions are false positives. This is due to the model’s

non-negative weights wi, as an inaccurate weight will likely
add on to the predicted speedup and thus cause false positives
rather than false negatives. Since false positives are more
harmful for performance due to the inferred slowdowns, the
overall execution time consequently increases from 60.35 to
63.43 time units (+5%). It hints that the NNLS fitting method
is not suitable for the presented modeling approach.

On the NEON platform (baseline: f⊕ : 0, f	 : 17), both fit-
ted models decrease the number of mispredictions and achieve
a reduction in execution time. The LS-fitted model eliminates
15 false negative predictions, while introducing only one false
positive (f⊕ : 1, f	 : 2). The false positive code contains
array indirections (kernel s4116) and is predicted to have a
speedup Sest = 1.12, while it exhibits a small slowdown of
Smeas = 0.96. Despite this slowdown, the overall execution
time is reduced from 47.24 to 43.02 time units (-9%).

The model fitted with NNLS removes all false negatives, but
introduces three false positives at the same time (f⊕ : 3, f	 :
0). The impact of these false positives is limited, however,
and the model achieves a reduction in execution time from
47.24 to 43.14 time units (-9%) due to the eliminated false
predictions. The overview of all model metrics can be found
in Table I.

B. Model Validation

After fitting the model, we validated its predictive ability
using Leave One Out Cross Validation (LOOCV). LOOCV is
equivalent to a leave-p-out cross-validation with p = 1. The
choice of p, preferred to larger values, is motivated by the
training data’s sparse dataset, as all training codes have been
designed to tackle diverse individual patterns.

To run the LOOCV analysis, a model is trained leaving out
one kernel. The speedup of the left-out kernel is then predicted
using that trained model. This process is repeated for each
kernel in the training dataset. Results for the LS- and NNLS-
fitted models can be found in Table I. Plots to visualize the
results for the most accurate model, the LS-fitted model, are
presented in Figure 4.

As expected, the error of the LOOCV results is generally
larger than when a model is trained on the whole data set.

On AVX2, the correlation drops from 0.88 on fitted data to
0.66 on LOOCV data for the LS-fitted model, which is still
higher than the baseline of 0.58 (+13%). For the NNLS-fitted
model, however, the correlation between estimated and mea-
sured speedup drops below baseline to 0.53 (-9%). Nonethe-
less, the average L2 distances are still significantly lower than
baseline for both models (LS: -47%, NNLS: -43%). In terms
of mispredictions, neither model introduces new errors. They
are consistent at (f⊕ : 3, f	 : 3) for LS and (f⊕ : 9, f	 : 0)
for NNLS, with both models still mispredicting the same
codes as previously. As a consequence, normalized execution
times do not change and still present the results discussed in
section VI-A: the LS-fitted model exhibits a speedup, while
the NNLS-fitted model presents a slowdown.

On the NEON hardware, the correlation between estimated
and measured speedup drops below baseline for both models,

2 4 6 8

2

4

6

8

1

1

ρ = 1

Sest′

Smeas

AVX2 — LS

ρ = 0.88

2 4 6 8

2

4

6

8

1

1

ρ = 1

Sest′

Smeas

AVX2 — NNLS

ρ = 0.79

2 4 6 8

2

4

6

8

1

1

ρ = 1

Sest′

Smeas

AVX2 — SVR, Polynomial Kernel

ρ = 0.64

2 4 6

2

4

6

1

1

ρ = 1

Sest′

Smeas

NEON — LS

ρ = 0.88

2 4 6

2

4

6

1

1

ρ = 1

Sest′

Smeas

NEON — NNLS

ρ = 0.80

2 4 6

2

4

6

1

1

ρ = 1

Sest′

Smeas

NEON — SVR, Polynomial Kernel

ρ = 0.58

Fig. 3. Correlation between estimated and measured speedups of training data after linear fitting

from 0.76 to 0.62 (LS, -18%) and 0.37 (NNLS, -51%).
Despite this drop in correlation, both models still outperform
baseline in terms of L2 distances (LS: -70%, NNLS: -57%).
Furthermore, the baseline is exceeded in terms of number
of mispredicted kernels and execution times. The LS-fitted
model introduces one extra false positive and one extra false
negative prediction (f⊕ : 3, f	 : 2). Regardless of these two
additional mispredictions, the normalized execution time is
still 8% below baseline at 43.49. For the NNLS-fitted model,
one additional false negative is introdued (f⊕ : 3, f	 : 1),
which increases the normalized execution time slightly to
44.04 time units (7% below baseline).

Based on the presented fitting and validation results, we
assume that the Least Squares method is the most suitable
one to fit our proposed cost model. We therefore focus on
the analysis of the LS-fitted model and will not discuss the
NNLS-based model further.

C. Feature Analysis
Having a fitted and validated model to predict code speedup,

we can generate insight into what features are the most impor-
tant for an accurate prediction on a specific target hardware.
For this purpose, two different metrics were analyzed. First, a
greedy forward feature selection was performed to understand
which features are critical to reduce modeling error. Second,

the obtained weights wi were ranked, indicating which features
contribute the most to code speedup and which features impact
the speedup negatively.

Greedy forward feature selection is an algorithm that ranks
a given feature set based on training data. It produces a
list that indicates which features are the most essential in
reducing model error. The algorithm starts with an empty
feature set. It then selects the feature that produces the smallest
model error when the model is trained with only one feature.
This denominates the single best feature of the model. In
its next iteration, the algorithm determines a second feature,
which, combined with the already selected single best feature,
produces the smallest model error for a model trained with
two features. The algorithm then continues selecting features
in this manner until a pre-determined number of features is
selected or the model error is not reduced further.

For our proposed cost model, we chose the L2 distance
between estimated and modeled speedup as the error metric.
The results of the greedy forward feature selection on our
training data are listed in Table II. It can be seen that on both
hardware platforms, the getelementptr feature is selected
as the best feature. This is a feature that is present in all of
our training data kernels, i.e. it has the best possible coverage.
Furthermore, it is correlated to the total number of memory

AVX2 LS NNLS NEON LS NNLS

Baseline Fitted LOOCV Fitted LOOCV Baseline Fitted LOOCV Fitted LOOCV

Set Size 99 85
ρ 0.58 0.88 0.66 0.79 0.53 0.76 0.88 0.62 0.80 0.37

L2
avg 0.26 0.08 0.14 0.11 0.15 0.23 0.04 0.07 0.05 0.10

L2
max 4.58 3.88 6.01 4.33 6.05 4.56 1.56 2.10 1.44 4.84

f⊕ 4 3 3 9 9 0 1 2 3 3
f	 9 3 3 0 0 17 2 3 0 1

tscl 99.00 85.00
tvec 60.35 58.61 58.61 63.43 63.43 47.24 43.02 43.49 43.14 44.04
topt 56.93 42.65

TABLE I
IMPROVEMENTS ON TSVC AND POLYBENCH KERNELS AFTER DATA FITTING AND LEAVE ONE OUT CROSS VALIDATION

2 4 6 8

2

4

6

8

1

1

ρ = 1

Sest

Smeas

AVX2

base: ρ = 0.58

L2 : ρ = 0.66

1 2 3 4 5 6

1

2

3

4

5

6

1

1

ρ = 1

Sest

Smeas

NEON

base: ρ = 0.76

L2 : ρ = 0.62

Fig. 4. Leave One Out Cross Validation on training data for LS-fitted model

AVX2 NEON
Rank Feature L2 Feature L2

1 getelementptr 18.20 getelementptr 7.61
2 shl 17.25 icmp 6.86
3 fptrunc 16.45 and 6.51
4 trunc 15.85 bitcast 6.25
5 br 15.42 fmul 6.08
6 fdiv 15.10 or 5.98
7 fmul 14.97 LD_VecReverse 5.89
8 lshr 14.86 sub 5.80

Baseline 25.45 18.48
Full Model 8.19 3.54

TABLE II
TOP EIGHT FEATURES CHOSEN BY GREEDY FORWARD FEATURE

SELECTION ON TRAINING DATA; ERROR METRIC IS THE EUCLIDEAN
DISTANCE BETWEEN MODELED AND MEASURED SPEEDUPS

accesses that are performed within the loop. A model utilizing
only this single best feature will alredy reduce the L2 distance
by 29% on AVX2 and by 41% on NEON platforms compared

to their respective baselines. However, such a model would
still infer a significant number of mispredictions, impacting
the normalized execution time negatively.

Besides investigating which features are critical to obtain
a small error in the model, it is also possible to analyze
the feature values to understand how much each contributes
to the estimated speedup. This is possible due to the linear
nature of our cost model. As each feature is multiplied by
its weight and summed up to get the estimated speedup (see
Section V-A), the weights signify the impact on speedup. In
this context, a positive weight means that the instruction will
benefit from being vectorized; the higher the value, the higher
the performance gain due to vectorization. A negative weight
indicates overhead that is inferred due to the vectorization, i.e.
it is not beneficial to vectorize this instruction. Such a feature
ranking can also be used to hint programmers what instructions
to avoid on certain platforms. Results for AVX2 and NEON
hardware are shown in Table III. Interestingly, results vary
significantly between the two hardwares.

For positive weights, i.e. those instructions that benefit from
vectorization, the top five on AVX2 are arithmetic instructions,

AVX2 NEON
Feature wi Feature wi

fdiv 84.12 ST_VecReversed 15.41
icmp 37.42 ST_Interleaved 7.70

⊕ fcmp 31.83 ST_Vector 5.92
sub 15.38 fsub 5.85
fadd 12.13 ST_Scalarized 4.90

shl -42.91 urem -20.94
LD_VecReverse -23.53 call -8.93

	 fptosi -17.27 LD_Scalarized -6.13
LD_Scalarized -13.25 shl -5.95
br -10.90 sext -3.41

TABLE III
TOP FIVE HIGHEST FEATURE WEIGHTS AFTER FITTING; POSITIVE WEIGHTS

CONTRIBUTE TO SPEEDUP, NEGATIVE WEIGHTS IMPACT SPEEDUP

while they are almost exclusively memory store accesses on
NEON. It shows that vectorization success depends on very
different code characteristics on the two platforms. It also
emphasizes the importance to add code characteristics such as
block composition/arithmetic intensity to the cost model. For
negative weights, i.e. those instructions that are not beneficial
to vectorize and might add overhead, results are more similar.
On both platforms, the feature representing a scalarized load
(LD_SCALARIZED) can be found. In this case, the impact on
peformance stems from the inferred overhead that is needed for
vector assembly. On AVX2, the LD_VecReverse is another
load feature in the top five and is used for reverse loops. This
is in line with our observation in Section V-B.

The feature analysis highlights the portability of the ap-
proach: despite our model being based on high-level features
from LLVM bitcode, our proposed methodology is able to
distinguish those code features that impact vectorization, in-
dependent of the target SIMD ISA.

VII. CONCLUSION

Compiler optimizations, such as vectorization, rely on cost
modeling to assess the benefit of code transformations. To
understand how accurate these cost models are, we analyzed
the vectorization profitability prediction in LLVM’s and GCC’s
auto-vectorizers. By comparing the correlation between pre-
dicted and measured speedup on more than 85 kernels, we
are able to show that the current assessment over- estimates
vectorization benefits. This leads to a weak-to-moderate corre-
lation between estimated and actual speedup, mispredictions,
and a loss in execution time.

We therefore propose a novel cost modeling approach
that is platform independent and improves the state of the
art of LLVM’s performance prediction. Based on LLVM’s
intermediate representation, refined memory access features,
and basic block composition, the resulting cost model is able
to improve the prediction accuracy on all three metrics. Tested
on two hardware platforms (based on AVX2 and NEON SIMD
ISAs), the average Euclidean distance between the predicted
and measured speedups is reduced by at least 65%. At the

same time, the number of mispredictions decreases from 13
to 6 on AVX2 and from 17 to 5 on the NEON hardware.
Consequently, the normalized execution time of the validation
dataset is reduced by 3% on AVX2 and 9% on NEON.

By analyzing all features and their weights, we are further-
more able to generate platform specific insight. Due to the
linear nature of our model, a feature correlates directly with
its impact on vectorization, be it positive or negative. On our
test hardwares, for example, we are able to identify that on
AVX2, arithmetic instructions such as fdiv or icmp benefit
the most from vectorization, while the same is true for store
instructions on NEON.

In future work, we would like to apply our cost model to
other optimization passes, such as the SLP vectorizer, to enable
a single aligned cost model infrastructure in the compiler.

REFERENCES

[1] S. Maleki, Y. Gao, M. J. Garzarán, T. Wong, and D. A. Padua, “An
Evaluation of Vectorizing Compilers,” in Proceedings of the 2011
International Conference on Parallel Architectures and Compilation
Techniques, PACT ’11, pp. 372–382, IEEE Computer Society, 2011.

[2] M. J. Wolfe, High Performance Compilers for Parallel Computing.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.,
1995.

[3] K. Kennedy and J. R. Allen, Optimizing Compilers for Modern Archi-
tectures: A Dependence-based Approach. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2002.

[4] J. Shin, M. Hall, and J. Chame, “Superword-Level Parallelism in
the Presence of Control Flow,” in Proceedings of the International
Symposium on Code Generation and Optimization, CGO ’05, pp. 165–
175, IEEE Computer Society, 2005.

[5] P. Wu, A. E. Eichenberger, A. Wang, and P. Zhao, “An integrated
simdization framework using virtual vectors,” in Proceedings of the 19th
Annual International Conference on Supercomputing, ICS ’05, (New
York, NY, USA), pp. 169–178, ACM, 2005.

[6] Z. Yuanyuan and Z. Rongcai, “An open64-based cost analytical model
in auto-vectorization,” in 2010 International Conference on Educational
and Information Technology, vol. 3, pp. V3–377–V3–381, Sept 2010.

[7] D. Nuzman, I. Rosen, and A. Zaks, “Auto-vectorization of interleaved
data for SIMD,” in Proceedings of the ACM SIGPLAN 2006 Confer-
ence on Programming Language Design and Implementation, Ottawa,
Ontario, Canada, June 11-14, 2006, pp. 132–143, 2006.

[8] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan, “A
practical automatic polyhedral parallelizer and locality optimizer,” in
Proceedings of the 29th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’08, (New York, NY,
USA), pp. 101–113, ACM, 2008.

[9] K. Trifunovic, D. Nuzman, A. Cohen, A. Zaks, and I. Rosen,
“Polyhedral-model guided loop-nest auto-vectorization,” in Proceedings
of the 2009 18th International Conference on Parallel Architectures and
Compilation Techniques, PACT ’09, (Washington, DC, USA), pp. 327–
337, IEEE Computer Society, 2009.

[10] K. Stock, L. Pouchet, and P. Sadayappan, “Using Machine Learning to
Improve Automatic Vectorization,” TACO, vol. 8, no. 4, pp. 50:1–50:23,
2012.

[11] E. Park, L.-N. Pouchet, J. Cavazos, A. Cohen, and P. Sadayappan,
“Predictive modeling in a polyhedral optimization space,” in Proceedings
of the 9th Annual IEEE/ACM International Symposium on Code Genera-
tion and Optimization, CGO ’11, (Washington, DC, USA), pp. 119–129,
IEEE Computer Society, 2011.

[12] E. Park, J. Cavazos, L. Pouchet, C. Bastoul, A. Cohen, and P. Sa-
dayappan, “Predictive Modeling in a Polyhedral Optimization Space,”
International Journal of Parallel Programming, vol. 41, no. 5, pp. 704–
750, 2013.

[13] A. Trouvé, A. J. Cruz, D. B. Brahim, H. Fukuyama, K. J. Murakami,
H. A. Clarke, M. Arai, T. Nakahira, and E. Yamanaka, “Predicting vec-
torization profitability using binary classification,” IEICE Transactions,
vol. 97-D, no. 12, pp. 3124–3132, 2014.

[14] A. Trouvé, A. J. Cruz, K. J. Murakami, M. Arai, T. Nakahira, and E. Ya-
manaka, “Guide automatic vectorization by means of machine learning:
A case study of tensor contraction kernels,” IEICE Transactions on
Information and Systems, vol. E99.D, no. 6, pp. 1585–1594, 2016.

[15] J. Shin, J. Chame, and M. W. Hall, “Compiler-controlled caching
in superword register files for multimedia extension architectures,” in
Proceedings of the 2002 International Conference on Parallel Architec-
tures and Compilation Techniques, PACT ’02, (Washington, DC, USA),
pp. 45–55, IEEE Computer Society, 2002.

[16] V. Porpodas and T. M. Jones, “Throttling Automatic Vectorization: When
Less is More,” in Proceedings of the 2015 International Conference on
Parallel Architecture and Compilation (PACT), PACT ’15, pp. 432–444,
IEEE Computer Society, 2015.

[17] I. Rosen, D. Nuzman, and A. Zaks, “Loop-aware SLP in GCC,” in GCC
Developers Summit, 2007.

[18] Z. Chen, Z. Gong, J. J. Szaday, D. C. Wong, D. Padua, A. Nicolau, A. V.
Veidenbaum, N. Watkinson, Z. Sura, S. Maleki, et al., “Lore: A loop
repository for the evaluation of compilers,” in 2017 IEEE International
Symposium on Workload Characterization (IISWC), pp. 219–228, IEEE,
2017.

[19] L.-N. Pouchet, U. Bondhugula, et al., “The polybench benchmarks,”
URL: http://web. cs. ucla. edu/pouchet/software/polybench, 2017.

[20] T. Oliphant, A Guide to NumPy, vol. 1. Trelgol Publishing USA, 2006.
[21] T. Oliphant, “SciPy: Open source scientific tools for Python,” Computing

in Science and Engineering, vol. 9, pp. 10–20, 2007.
[22] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,

O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al.,
“Scikit-learn: Machine learning in Python,” Journal of Machine Learn-
ing Research, vol. 12, no. Oct, pp. 2825–2830, 2011.

