
Kd-tree Based N-Body Simulations
with Volume-Mass Heuristic on the GPU

Klaus Kofler∗, Dominik Steinhauser †, Biagio Cosenza ∗, Ivan Grasso ∗, Sabine Schindler † and Thomas Fahringer ∗
∗ Institute of Computer Science, DPS, University of Innsbruck, Austria

Email: [klaus|cosenza|grasso|tf]@dps.uibk.ac.at
† Institute of Astro- and Particle Physics, University of Innsbruck, Austria

Email: [Dominik.Steinhauser|Sabine.Schindler]@uibk.ac.at

Abstract—N-body simulations represent an important class
of numerical simulations in order to study a wide range
of physical phenomena for which researchers demand fast
and accurate implementations. Due to the computational
complexity, simple brute-force methods to solve the long-
distance interaction between bodies can only be used for small-
scale simulations. Smarter approaches utilize neighbor lists,
tree methods or other hierarchical data structures to reduce
the complexity of the force calculations. However, such data
structures have complex building algorithms which hamper
their parallelization for GPUs.

In this paper, we introduce a novel method to effectively
parallelize N-body simulations for GPU architectures. Our
method is based on an efficient, three-phase, parallel Kd-tree
building algorithm and a novel volume-mass heuristic to reduce
the simulation time and increase accuracy.

Experiments demonstrate that our approach is the fastest
monopole implementation with an accuracy that is compara-
ble with state of the art implementations (GADGET-2). In
particular, we are able to reach a simulation speed of up
to 3 Mparticles/s on a single GPU for the force calculation,
while still having a relative force error below 0.4% for 99%
of the particles. We also show competitive performance with
existing GPU implementations, while our competitor shows
worse accuracy behavior as well as a higher energy error
during time integration.

Keywords-N-body, GPGPU, Kd-tree;

I. INTRODUCTION

In history, understanding the motion of celestial objects
under their mutual gravitational attraction, motivated to
search for a solution to the N-body problem. Newtonian
attraction forces between each pair of bodies lead to their
acceleration and hence collective motion. The goal is to
predict future positions and velocities for all bodies (often
called particles in this context) starting from a given initial
state. The corresponding differential equations to this initial
value problem can be solved analytically only for N ≤ 3.
Larger simulations can only be calculated numerically.

The challenge in N-body codes is to find those mutual
gravitational attraction forces. The simplest way to evaluate
the force acting on a single particle is by summing the
contribution from all the other particles, called direct sum-
mation approach. However, this rather brute-force method is

of order O(N2) and is hence only a viable option for small
problems.

Particle-mesh codes, as described in [1] are more efficient
than direct summation. However, close particle interactions
are not well modeled. Hybrid approaches such as P3M [2]
overcome this problem.

Tree codes: When calculating the gravitational force
contribution of a reasonably distant group of close bodies
on a single particle, this group can be approximated with a
single, more massive proxy-body. To add information about
the distribution of the particles inside this proxy-body, higher
order moments of the gravitational potential’s multipole
expansion of the particle group can be used. This observation
is exploited in the so-called tree code approach to the N-body
problem [3]. Tree codes make use of space-partitioning data
structures to recursively divide up the simulation domain
in sub-volumes. While Barnes&Hut [3] used octrees, we
adopt Kd-trees in our work: Each volume is split in two
sub-volumes according to a splitting plane. The leaves of
the tree contain just one single particle. Thus, for each node
the potential in terms of a multipole expansion is calculated.
When calculating the force contribution for a single particle,
a tree traversal is done. In case a tree node, representing a
part of the simulation domain, is reasonably remote from
this particle, the approximate potential in this node can
be used to calculate the force contribution of all particles
contained within this node. Hence, the subtree of this node
does not need to be considered anymore. The cell opening
criterion [3] defines whether the tree walk can be stopped
at the current node, using this node as proxy body, or the
descent is continued further in the tree to calculate the force
more accurately.

GPU: Being a very computational intensive applica-
tion, N-body simulations have been historically interesting
for high performance computing. Recently, even Graphics
Processing Units (GPUs) have been exploited for this task.
However, while direct summation approaches are quite easy
to be run on GPUs, more advanced hierarchical methods are
very challenging. The use of intricate data structures, their
traversal and in particular building them is a task which
makes it hard to exploit the massive parallelism offered

by such hardware. Three factors are critical for N-body
simulations based on hierarchical methods on GPUs: 1) to
run the whole algorithm on the GPU in order to avoid ex-
pensive communication bottlenecks due to CPU calculation
of intermediate steps; 2) a fast traversal algorithm for the
hierarchical data structure; 3) a fast building algorithm for
such a data structure.

Accuracy: For all hierarchical methods, the accuracy
of simulations also plays an important role: clustering the
particles aggressively may lead to impressive performance
improvement, but the obtained results lack accuracy. Not
just the traversal, but also the layout of the hierarchical data
structure affects accuracy.

Our contribution: In this paper, we introduce a novel
method to accurately and efficiently calculate the gravita-
tional forces, the computationally most expensive part of
N-body simulations, on the GPU. Our contributions are:

• a novel hierarchical method for calculating gravitational
forces based on a Kd-tree on a GPU;

• a probabilistic approach based on volume-mass heuris-
tic (VMH) to efficiently group particles in a Kd-tree
and drastically improve the accuracy and efficiency of
the Kd-tree traversal;

• a parallel and accurate approach to efficiently build the
Kd-tree on the GPU: by using a three phase building
algorithm, we maximize the thread utilization of the
GPU during the building in both top- and bottom-part
of the Kd-tree;
Outline: Our N-body method consists of three parts:

the tree building, the tree traversal, and the time integration.
A parallel implementation of the Kd-tree building algorithm
for the GPU is presented in Section III. Section IV intro-
duces our probabilistic approach called volume-mass heuris-
tic (VMH). The tree traversal and the force calculation are
discussed in Section V, the time integration in Section VI.
Performance and accuracy are presented and discussed in
Section VII. Section VIII concludes the paper.

II. PREVIOUS WORK

N-body simulations: Historically, many researchers
from both computer science and astrophysics have developed
N-body simulations on supercomputers. Warren and Salmon
[4] designed one of the first parallel implementation of the
Barnes&Hut algorithm. The authors of [5] propose a parallel
implementation of an N-body code using a Kd-tree structure.

A very widespread code used in astrophysics, mainly for
cosmological simulations and simulations on galaxy scales,
is the treePM code GADGET [6], [7]. This code implements
a combination of a particle-mesh and a Barnes&Hut tree
code, massively parallelized for distributed memory ma-
chines using MPI.

Nyland et al. [8] implemented a direct summation, brute-
force technique. They improved their code by means of loop
unrolling and by manually prefetching a certain number p

of body descriptions on the GPU. Elsen et. al [9] created
a similar solution using the BrookGPU programming lan-
guage [10].

The Gravity Pipe (GRAPE) [11] designated a very effi-
cient hardware implementation of Newtonian pair-wise force
calculations between particles in a self-gravitating N-body
system.

Instead of direct summation, smarter approaches to attack
the N-body problem use hierarchical algorithms and three
dimensional space partitioning strategies. Hamada et al.
[12] implemented a parallel, hierarchical N-body simulation
which efficiently calculates the O(N logN) tree code and
O(N) fast multipole method (FMM) on multiple GPUs.
Hamada and Nitadori reached 190 TFlops [13] on DEGIMA,
a cluster of 576 GPUs interconnected by InfiniBand, using
their tree code.

The parallel cosmological simulator ChaNGa [14] is a
hierarchical N-body gravity solver written in CHARM++,
which has been run on the NCSA Lincoln GPU cluster.

2HOT [15] is a N-body simulation code based on a paral-
lel hashed octree algorithm. It is designed to run efficiently
on up to 256k processors with an efficiency of 0.86. 2HOT
also includes a CUDA, as well as an OpenCL version for
the gravitational interaction functions.

Bédorf et al. [16] implemented Bonsai1, a sparse octree
gravitational N-body code that runs entirely on the GPU. In
contrast to most other tree codes, Bonsai traverses the tree
breadth-first to calculate the force acting on each particle.

Probabilistic Heuristics for Hierarchy Building: An
approach to improve the traversal time of hierarchical data
structures is to use a probabilistic heuristic while building
it: the higher the probability of a node to be accessed, the
higher it will be placed in the hierarchy. Similar heuris-
tics have been largely used in the context of ray tracing,
known as SAH (Surface Area Heuristics). Wald et al. [17]
introduced an algorithm to build SAH-based Kd-trees in
O(N logN). Other approaches using SAH have been used
for BVH (bounding volume hierarchy) and other hierarchical
approaches [18]. Zhou et al. [19], in particular, presented an
algorithm for constructing Kd-trees on GPUs. They achieve
real-time performance by exploiting the streaming architec-
ture of modern GPUs at all stages of Kd-tree construction.
They develop a special strategy for large nodes at upper
tree levels to further exploit the fine-grained parallelism of
GPUs. Our work applies a similar method to build a tree for
N-body simulations.

III. PARALLEL KD-TREE BUILDING

Our Kd-tree building algorithm is designed to perform
well on modern GPUs. This means that it has to expose
a large amount of parallel operations. To exploit the full

1Version 2, http://castle.strw.leidenuniv.nl/software/bonsai-gpu-tree-
code.html

potential of a modern GPU, several thousands of threads
must run concurrently at the same time. The program was
implemented in OpenCL. Our highly parallel implemen-
tation is inspired by the algorithm presented in [19] and
consists of three phases:

• Large node phase
• Small node phase
• Kd-tree output phase
The large node phase takes place at the beginning of the

tree construction, where only few nodes, containing many
particles, exist. To increase the degree of parallelism, both,
inter- and intra-node parallelism are exploited during this
phase. In the small node phase, many nodes are handled at
a time. Therefore, it is better to avoid the additional synchro-
nization overhead introduced by the intra-node parallelism
and rely on inter node parallelism only in this phase.

A pseudo code representation of our implementation is
shown in Algorithm 1. It shows, that the implementation
is split into four loops. The first loop represents the so
called large node phase, the second the small node phase
while the last two perform the up pass and the down
pass to sort the tree nodes in depth first ordering. All
iterations of these four main loops in our implementation
have to be executed sequentially. Therefore, these loops
cannot be used to exploit parallelism. However, as explained
in the following paragraphs, there are several possibilities for
parallelization inside those loops.

Large node phase: In the large node phase, all large
nodes are split in two child nodes in the middle of their
longest dimension. Their particles are distributed to the
children depending on their position. This step is repeated
until no more large nodes are left. A large node is defined
as a node containing at least 256 particles. In this phase,
the inter node parallelism is maximized, e.g. by reductions
in local memory and parallel prefix scans which are both
known to perform well on GPUs [20]. While the reductions
in local memory are used to accelerate the bounding box
calculation, parallel prefix scans are needed to calculate the
position of particles in the particle array in parallel after
a node is split. The application of the afore mentioned
techniques introduces several global synchronizations due
to data dependencies. However, the overhead introduced by
additional synchronization is outweighed by the increase of
parallelism. Furthermore, in this phase the node splitting
decision is designed not to be affected by the number of
particles inside the node in order to scale to bigger data-sets.
Algorithm 2 depicts the large node phase implementation.
It is composed of six parallel loops, each of which is
implemented as a separate OpenCL kernel function.

Distributing the particles of a parent node to its two child
nodes, is the most time consuming part of the large node
phase, since it requires rearranging of the particles of the
parent node. When building a Kd-tree, this can be done only
after selecting the splitting point, since the particles have

Algorithm 1 Kd-tree construction.
function BUILDKDTREE(particles:list)

nodelist ← new list()
activelist ← new list()
nextlist ← new list()
smalllist ← new list()
rootnode ← new node(particles)
rootnode.offset ← 0
nodelist.add(rootnode)
activelist.add(rootnode)
while !activelist.empty() do . large node step

PROCESSLARGENODES(nodelist, activelist, nextlist,
smalllist, particles)

activelist ← nextlist
end while
activelist ← smalllist
while !activelist.empty() do . small node step

PROCESSSMALLNODES(nodelist, activelist, nextlist, par-
ticles)

activelist ← nextlist
end while
treeHeight ← max level of all nodes in nodelist
for level ← treeHeight to 0 do

UPPASS(nodelist, particles, level)
end for
tree ← new list()
for level ← 0 to treeHeight do

DOWNPASS(nodelist, tree, level)
end for

end function

to be partitioned according to the splitting point along the
splitting dimension. The particles don’t have to be sorted,
but all particles belonging to the left child have to be at the
beginning of the parent’s node particle sub-array, while all
the particles belonging to the right child have to be moved to
the end of that array. This can be done in linear time in each
timestep. When executing our implementation on a CPU,
one OpenCL thread is started for each active node which
assigns the particles to the child nodes in a sequential loop.
This approach works well for CPUs. However, it does not
expose enough parallelism to reach a good performance on
GPUs, since there are not many active nodes in this phase.
Therefore, we use a parallel prefix scan to determine for
each particle its index in the particle list of the left and
right child, respectively. Using the result of the prefix scan,
the particles can be inserted into the particle lists of the two
child nodes in parallel.

Small node phase: When no more large nodes are
left, the program enters the small node phase. In this phase
we aim at reducing the synchronization overhead (it needs
only one synchronization at the end of each iteration) by
starting only one single thread per active node. Increasing the
parallelism any further would not improve the performance,
since the number of active nodes is very high in most
iterations. In order to improve the quality of the tree, this
phase uses a splitting strategy based on VMH as described

Algorithm 2 Large Node Phase
function PROCESSLARGENODES(nodelist:list, activelist:list,
nextlist:list, smalllist:list, particles:list)

chunklist ← new list()
. group particles to chunks
for all n in activelist in parallel do

Group all particles in n into fix sized chunks and store
them in chunklist

end for
. calculate per-chunk bounding box
for all c in chunklist in parallel do

Compute bounding box for each chunk c
end for
. calculate per-node bounding box
for all n in activelist in parallel do

Compute bounding box for each node n using the bound-
ing boxes of the chunks

end for
. split large nodes
for all n in activelist in parallel do

set n.splittingPoint to the spatial median along the longest
dimension

Split node n at n.splittingPoint
Store generated child nodes in nextlist

end for
nodelist.add(nextlist) . add all new nodes to nodelist
. sort particles to children
for all n in activelist in parallel do

for all p in n.particles do
if p.pos[splitDim] < n.splittingPoint then

n.leftChild.particles.append(p)
else

n.rightChild.particles.append(p)
end if

end for
end for
. small node filtering
for all n in nextlist in parallel do

if n is small node then
smalllist.add(n)
nextlist.remove(n)

end if
end for

end function

in Section IV. In our environment, each particle inside a
node introduces one splitting candidate (along the node’s
longest dimension). The VMH cost has to be evaluated on
each splitting candidate, which makes this strategy infeasible
for large nodes. After the split, the particles of the parent
node are assigned to the two child nodes, depending on
their position. Each node is split according to the candidate
giving minimal VMH, until the leaf nodes, containing only
one single particle, are reached. The implementation of this
phase is shown in Algorithm 3. It is composed of one parallel
loop which is mapped to an OpenCL kernel function. Due to
the typically high number of active nodes during this phase,
the splitting of nodes into chunks is not necessary. Starting
one OpenCL thread for each active node is sufficient to keep
all processing elements of a GPU busy.

Algorithm 3 Small Node Phase
function PROCESSSMALLNODES(nodelist:list, activelist:list,
nextlist:list, particles:list)

. split small nodes
for all n in activelist in parallel do

. calculate VMH
V MH←∞
for all potential splitting points sp of node n do

V MHsp← CALCVMH(n, sp)
if V MH >V MHsp then

V MH←V MHsp
n.splittingPoint ← sp

end if
end for
Split node n at n.splittingPoint
Store generated child nodes in nextlist
nodelist.add(nextlist) . add all new nodes to nodelist
. sort particles to child nodes
for all p in n.particles do

if p.pos[splitDim] < n.splittingPoint then
n.leftChild.particles.append(p)

else
n.rightChild.particles.append(p)

end if
end for
. Leaf node filtering
for all n in nextlist do

if n.particles.size = 1 then
nextlist.remove(n)

end if
end for

end for
end function

Kd-tree output phase: During the first two phases,
new nodes are added to the nodelist in the same order
as they are created, which means, they are not sorted. In
order to enable a efficient tree walk, the nodes are ordered
in a depth-first manner, which is done in the last phase
of our tree construction. To sort the nodes of the Kd-
tree two passes have to be performed: First a bottom-up
pass which calculates the center of mass and the mass of
each node (which corresponds to the proxy-body in the
node or the potential’s monopole moment) as well as the
size of the subtree underneath it. The size of the subtree
is important in order to calculate the actual position of a
node in the final tree. The implementation of this pass is
described in Algorithm 4. The second pass is building the
final tree top down. The root is written at the beginning of
the array. For each node at position i, the left child will
be written to position i+ 1 and the right child to position
i+ 1+ sizeo f (le f tChild). Sorting the nodes in that way, a
linear traversal of the node array is equal to a depth-first
traversal of the tree. A detailed description of this pass can
be found in Algorithm 5.

Algorithm 4 Up pass
function UPPASS(nodelist:list, particles:list, position:int)

for all n in nodelist at level position in parallel do
if n.isLeaf then

n.size ← 1
n.mass ← n.particles[0].mass
n.centerOfMass ← n.particles[0].pos
n.l ← 0

else
n.size ← n.leftChild.size + n.rightChild.size + 1
n.mass ← n.leftChild.mass + n.rightChild.mass
n.centerOfMass ← (n.leftChild.centerOfMass

·n.leftChild.mass + n.rightChild.centerOfMass
·n.rightChild.mass) / n.mass

n.l ← maximum side length of n.boundingBox
end if

end for
end function

Algorithm 5 Down pass
function DOWNPASS(nodelist:list, tree:list, position:int)

for all n in nodelist at level position in parallel do
if !n.isLeaf then

n.leftChild.offset ← n.offset + 1
n.rightChild.offset ← n.offset + 1 + n.leftChild.size

end if
tree[n.offset] ← n

end for
end function

IV. VOLUME-MASS HEURISTIC (VMH)

When analyzing the requirements of an optimal Kd-tree
for an N-body simulation, we determined that they are very
similar to the requirements for ray-tracing. In both cases,it is
not really important that the tree is balanced, but the average
path length of the walks through the trees are minimized.
However, there is a slight difference between those two
applications. In ray-tracing each ray walks from the root
to a leaf, deciding at each node n if it should advance to
the left or the right child of n. Therefore, the SAH heuristic
tries to even the probability of taking the left or right path
at each node. In contrast to that, for the N-body simulation,
the path of each particle is highly divergent, since it always
advances to both children of a node, unless in the cases
when no further descent is needed on that node (i.e. the cell
opening criterion is not fulfilled). Therefore we want a tree
where, on each node the probability to stop the decent at the
left child is equal to the probability to stop it on the right
child.

Due to this similarity of requirements on the tree, we
used a variation of the SAH to determine the splitting point
of the nodes in our tree (at least for the small nodes, see
Section III). In our case, the heuristic is ported to 3D and the
surface area is replaced by the mass of the corresponding
node. This leads to the following equation:

V MH(x) =Vl(x) ·Ml(x)+Vr(x) ·Mr(x)

where Vl(x) and Ml(x) correspond to the volume and mass
of the potential left child of the node, splitting the node at an
axis aligned plane crossing the parent node at position x in
the splitting dimension. Vr(x) and Mr(x) denote the volume
and mass of the node’s right child when split at position
x. V MH(x) is the volume-mass heuristic cost for the split
position x. The cost is evaluated at numerous split position
candidates for each node. The node is split at the candidate
which minimizes the VMH cost.

V. FORCE CALCULATION WITH KD-TREES

As described in the previous section, trees can be used
to efficiently reduce the computational effort to solve the
N-body problem numerically. In our implementation we are
using a Kd-tree.

Gravitational force calculation: The main idea of tree
algorithms is to reduce the computational cost of the force
computation on a single particle by using a hierarchical mul-
tipole expansion. All particles in the simulation domain are
hierarchically grouped into cells, the tree nodes for which the
multipole expansion is calculated. For the force contribution
of distant particles, a larger grouping of particles, namely a
node in a higher level of the tree, can be used. Using the
cell opening criterion, it can be decided whether a group
of particles can be used or the tree needs to be traversed
further. This approach allows to compute the force on a
single particle with approximately logN interactions.

Unlike other implementations which are using quadrupole
(e.g. Bonsai [16]) or even higher moments (e.g. Gaso-
line [21]), we follow the approach of GADGET-2 and only
use monopole moments with the advantage that less memory
is required, as just the total mass in a node and the center-
of-mass coordinates need to be stored. Furthermore, the
computational effort is lower while constructing the tree
as higher moments do not need to be calculated and the
monopole moments can be calculated conveniently during
tree construction (see Section III). However, using monopole
moments lowers the force accuracy. Still, the force accuracy
can be controlled by the cell opening criterion e.g. by using
a smaller cell opening angle. Depending obviously on the
problem to be solved and on the implementation, opening
more cells is still a small trade-off compared to computing
higher order moments during tree construction.

Cell opening criterion: In our implementation, as we
are using monopole moments for tree nodes, we apply the
same strategy used in GADGET-2 [7], and use their optimal
cell opening criterion. A cell (i.e. a node in the Kd-tree) is
accepted if

GM
r2

(
l
r

)2

≤ α|a|

evaluates to true, with G being the gravitational constant,
M the total mass in the node, r the distance of the particle
under consideration to the center-of-mass of the node, and
l the largest side-length of the axis aligned bounding box
around all nodes inside the corresponding node. Finally, a
is the acceleration of the particle from the last timestep and
α a tolerance parameter, used to control the force accuracy.
However, in some cases this criterion is fulfilled also if the
actual particle is located within a considered node which
would lead to large force errors. To prevent against this, we
additionally require the particle to lie sufficiently outside the
bounding box of a node to be accepted. For more details we
refer to [7].

A. Parallel force calculation using a Kd-tree

After the tree has been built, the actual force on each
particle can be calculated by walking through the tree in a
depth first manner. For each particle an OpenCL thread is
started, walking the tree beginning from the root. On each
node, the cell opening criterion is evaluated. If it is fulfilled,
the walk will advance to both child nodes of the current
node. If not, the force acting on the particle is calculated,
using the current node as a proxy for all particles within
the node. The pseudocode for our tree walk is shown in
Algorithm 6. Although the tree walk is highly divergent, it
can be implemented as a single loop, due to the depth-first
ordering of the nodes.

Algorithm 6 Force calculation for each particle using the
previously constructed Kd-tree

function TREEWALK(particles:list, tree:list)
for all p in particles in parallel do

for currentNode← 0 to tree.size do
n← tree[currentNode]
if n.isLeaf or !OPENCELL(p, n) then

p.force ← p.force+ CALCFORCE(p, n)
. skip entire subtree of current node
currentNode← currentNode + n.size

else
. continue depth-first walk
currentNode← currentNode + 1

end if
end for

end for
end function

VI. TIME INTEGRATION

To carry out full N-body simulations, we implement a
time-centered leapfrog integration scheme (e.g. [3], [22])
with constant timesteps. Positions of the particles are ad-
vanced at full timesteps (drift) while new velocities are
calculated at halfsteps (kick),

xi+1 =xi +vi+ 1
2

∆t

vi+ 1
2
=vi− 1

2
+ai ∆t

with xi being the position and vi the velocity of a particle
at time i and ∆t being the timestep. At each full timestep,
the acceleration ai is calculated using the Kd-tree imple-
mentation presented in the previous sections. Dynamic tree
updates are used to prevent rebuilding the tree in each
timestep: after calculating the new positions of the particles,
the center of mass and bounding box of each tree node
are updated. This update is performed by propagating the
updated positions/bounding boxes bottom up the Kd-tree in
a single pass. The tree is rebuilt when the computational cost
(measured in numbers of interactions per particle) exceeds
the initial value (when the tree was rebuilt the last time) by
20 %. Initially, vi− 1

2
is calculated by kicking the system of

particles by half a timestep.
Being of O(n), the time needed for the time integration

is negligible with respect to the tree building and force
calculation.

VII. RESULTS AND EVALUATION

In this Section we evaluate the result of our implementa-
tion in comparison to the state of the art simulation codes
in terms of accuracy and execution speed.

A. Accuracy

Numerical issues in N-body simulations include force ac-
curacy, time integration accuracy and dynamic range (mass
resolution). We want to test our code with respect to the
force accuracy provided by the approximation of the Kd-
tree, as well as the conservation of energy.

When evaluating the accuracy of the force calculation,
the mean squared error is not an ideal metric, since bodies
with a high accuracy can compensate high errors of other
bodies. This does not reflect well the quality of the solution.
Especially hierarchical methods using a data structure which
is inappropriate for the problem are very accurate on some
bodies while others show a high error. Therefore, the 99
percentile gives more information about the quality of the
solution, since it gives an upper limit for the error on almost
all individual particles.

We compare our results to the widely spread GADGET-
2 code, also because we use the same monopole and cell
opening criterion, and to Bonsai, the state of the art N-body
code for GPUs.

For our tests we are using a particle distribution according
to a Hernquist density profile [23], an analytical model to
describe dark-matter halos, spherical galaxies and bulges.
For accuracy evaluation, we use 250,000 particles with a
total mass of 1.14×1012M�.

In collisionless systems (as the above cited applications
of the Hernquist profile are), approximate calculations of the

force are sufficient as long as the force errors are random
and small enough. On the other hand, the gravitational
field of N point masses can be calculated exactly by direct
summation. GADGET-2 provides a convenient functionality
to calculate the forces by direct summation (adirect) besides
the calculation via its octree. We are using this output as
a reference and calculate the relative force errors of all
particles from our implementation (GPUKdTree), GADGET-
2 and Bonsai according to

δa
a

=
|adirect−aGPUKdTree/Bonsai/GADGET2|

|adirect|
To allow accuracy comparison between the different

codes, we set the softening to zero as our implementation
and GADGET-2 are using a spline-kernel softening and
Bonsai is using Plummer softening (see [24] for more details
about gravitational softening in N-body codes).
We note that for the cell opening criterion of GADGET-2,
the acceleration of each particle of the previous timestep
is needed. As this information is not available for the first
force calculation, GADGET-2 uses the standard Barnes&Hut
opening criterion to calculate the force acting on the parti-
cles. However, this force is then just used for the optimal
opening criterion and the forces used in the first timestep
are recalculated. In our implementation, we start with zero
acceleration for all particles which effectively opens all
cells for all particles, leading to direct summation of all
forces. These accelerations agree with the ones computed
in GADGET-2 using direct summation, and are used in the
cell opening criterion of the actual tree walk. In Figure 1
the fraction of particles with a relative force error larger
than indicated by the curve are shown for different values
of the tolerance parameter α.

10−3 10−2

δa/a

10−4

10−3

10−2

10−1

100

fr
ac

ti
on

(>
δa
/a

)

Figure 1. Relative force error for different values of α =
0.0001,0.00025,0.0005,0.0025,0.001 in the cell opening criterion. The
graph shows the fraction of particles having a relative force error larger
than the indicated value.

As it is difficult to compare the two different cell opening

criteria and tree topologies, we investigate at which cost a
certain accuracy is achieved. Bonsai uses a slightly modified
Barnes&Hut criterion d > l

Θ
+δ with Θ being a parameter to

control the accuracy. For details we refer to [16]. In Figure 2
we show the mean number of interactions per particle needed
to get a smaller relative force error for 99% of the particles
as indicated by the points value along the y-axis. For all
tested parameters, GADGET-2 needs less interactions than
Bonsai to reach a comparable 99 percentile, although Bonsai
is calculating quadrupole moments in each interaction. Also
GPUKdTree needs less interactions to achieve the same
accuracy as Bonsai. For low accuracy settings, our approach
is even more efficient than GADGET-2.

0.3 1.0 4.0
interactions/particle ×103

10−3

10−2

δa
/a

(9
9

p
er

ce
nt

ile
)

GADGET-2

Bonsai

GPUKdTree

Figure 2. Mean number of interactions per particle needed to achieve
a certain accuracy for 99% of the particles in the simulation domain.
The different data points again correspond to runs with different accu-
racy parameters α = 0.005,0.0025,0.001,0.0005 for GADGET-2, α =
0.0025,0.001,0.0005,0.00025,0.0001 for GPUKdTree as well as Θ =
0.6,0.7,0.8,0.9,1.0 for Bonsai.

We also want to compare the accuracy of all three codes
when calculating the same amount of interactions. We chose
a value of 1000 interactions/particle for our test problem and
adjusted the values for α and Θ accordingly. As can be seen
in Figure 3, our implementation performs slightly better than
GADGET-2. The results of Bonsai however, show a much
higher scatter in relative force errors.

Finally, as another measure for the quality of our code,
we observe and compare the energy conservation. In Figure
4 we plot the relative energy error

δE =
E0−Et

E0

with E0 being the total energy (kinetic plus potential energy
of the particle distribution) at the beginning of the simulation
and Et the total energy at simulation time t. For all three
codes we chose the same configuration as for the accuracy
comparison in Figure 3. For GPUKdTree and Bonsai we
chose a fixed timestep of 0.003Myr. In GADGET-2 we set

10−4 10−3 10−2

δa/a

10−4

10−3

10−2

10−1

100

fr
ac

ti
on

(>
δa
/a

)

GADGET-2

Bonsai

GPUKdTree

Figure 3. Relative force errors for the three different codes used. For each
code α and Θ was chosen that the mean number of interactions per particle
is 1000. The dotted line marks the error at the 99 percentile.

this value as the maximum allowed timestep in order to
prevent the usage of the individual timestepping (differently
sized timestep for each particle depending on the current
acceleration acting on the particle) for a fair comparison
between all codes. The results show that our GPUKdTree
implementation provides a small energy error throughout
the whole simulation, comparable to GADGET-2. Bonsai
however shows a somewhat higher but at the same time
also more constant error. Both, GPUKdTree and GADGET-
2 show more scatter in the error with some spikes in the
distribution having a higher maximum error than Bonsai.

0 20 40 60 80 100
time [Myr]

10−6

10−5

10−4

10−3

10−2

δ
E

GPUKdTree

GADGET-2

Bonsai

Figure 4. The relative energy error δE = E0−Et
E0

throughout the simulation
is shown.

B. Performance

We evaluate the performance of our implementation
on various CPUs and GPUs from different vendors. Our
OpenCL implementation was designed to run on any device

that supports OpenCL. For performance reasons we use a
dedicated algorithm to sort bodies during the large node
phase for GPUs and CPUs. NVIDIA GPUs could not run
our OpenCL code correctly, giving wrong results without
any error message. However, since we used LibWater [25] to
implement our program, it could easily be ported to CUDA
without any changes in our code. The CUDA version works
flawlessly on the NVIDIA GPUs.

To evaluate the performance, we are using datasets con-
taining different number of particles, all using a Hernquist
density profile as used in our accuracy experiments de-
scribed in the previous paragraph. The dataset containing
two million particles could not be run on the AMD Radeon
HD5870 due to its limitation of the maximal buffer size.
We also compare the performance of our implementation
with the one achieved with GADGET-2 [7] and Bonsai [16].
GADGET-2 contains no implementation for GPUs and can
only be executed on CPUs. For our experiments we use the
same dual socket Intel Xeon X5650 system with a total of
twelve cores that we used to evaluate the performance of our
implementation on CPUs. Bonsai is implemented in CUDA
and is therefore limited to NVIDIA GPUs. Furthermore, the
version of Bonsai which is available online did not work on
our Tesla k20c GPU. On this hardware, the program crashed
due to a CUDA driver error. Hence, we could evaluate
Bonsai’s performance only on a NVIDIA GeForce GTX480.

For a fair comparison, we set the accuracy parameters for
each implementation to achieve an error below 0.4% for 99%
of the particles. This results in an α of 0.001 and 0.0025
for GPUKdTree and GADGET-2, respectively. For Bonsai,
Θ is set to 1.0.

Tree building: Table I shows the time needed for tree
building on different hardware with different data sizes. The
numbers show, that our tree building algorithm fits the GPU
architecture quite well. All GPUs show a speedup between
3.3 and 10.4 over the tested CPU. It is noteworthy, that the
NVIDIA GPUs are more effective for smaller datasets, while
the AMD GPUs scale better with the problem size. The rel-
ative bad performance of the AMD GPUs on small problem
sizes is related to the very high number of kernels that have
to be called during the tree building (see Section III) in
correlation with their high kernel invocation overhead [26].
The simulation with 2 million particles could not be run
on the AMD Radeon HD5870 due to its restriction to the
maximum size of a single data structure. It is interesting to
note, that the NVIDIA GeForce GTX480 shows almost the
same performance as the much newer NVIDIA Tesla k20c,
although the latter one has a much higher peak performance
(1.3 vs. 3.5 TFLOPs).

The times given for GADGET-2 and Bonsai include the
sorting of the particles and the building of the actual tree,
since they can construct the tree only on pre-sorted particles.
Building the octree used in both GADGET-2 and Bonsai is
much faster than building the Kd-tree used in our approach.

Table I
TREE BUILDING TIMES IN MS

N. Particles 250k 500k 1M 2M
Xeon X5650 881 1795 3640 7278
GeForce GTX480 158 290 595 1202
Tesla k20c 167 293 586 1195
Radeon HD5870 262 381 675 -
Radeon HD7950 152 219 380 698
GADGET-2 (X5650) 50 90 180 370
Bonsai (GTX480) 24 43 83 167

The main reason for this is the rearranging of the particles.
To build an octree, the domain is decomposed using a Peano-
Hilbert curve [6]. At the beginning of the tree building, the
particles are sorted according to this domain composition.
By doing so, the particles do not have to be rearranged
during the rest of the tree building. When building a Kd-
tree, on the other hand, the particles have to be rearranged
in each iteration of the tree building step, which takes a
significant amount of time.

Tree Walk: As explained in Section V, the force on each
particle is calculated by walking through the previously built
tree. The performance for the tree walk is given in Table II.
Also, the tree walk is faster on all tested GPUs than on
the tested CPU. The speedup varies between 1.9 and 6.3
depending on the GPU and data size. The AMD GPUs are
suited better for the tree walk than both NVIDIA GPUs.
Even the old AMD Radeon HD5870 is able to outperform
both NVIDIA GPUs. During the tree walk, the large kernel
invocation overhead of the AMD GPUs plays a minor role,
since the tree walk of all particles consists of only one
single kernel call. Using a AMD Radeon HD7950, our
implementation can reach a throughput of 3 Mparticles/s.

The measurements clearly show, that our implementation
is much faster than GADGET-2, mainly due to the efficient
use of the massively parallel GPU architecture. Also, using
the same CPU, the tree walk of our implementation is
approximately twice as fast as in GADGET-2. However,
GADGET-2 lacks a shared-memory implementation and is
handicapped by overhead due to the MPI library in these
tests. Bonsai shows a very high performance in our test case.
However, this high performance comes at the cost of worse
error distribution, as shown in Figure 3, and worse energy
conservation, as depicted in Figure 4.

VIII. CONCLUSION

We have observed, that octrees for N-body simulations
can be built very fast, on both GPUs and CPUs, when the
particles are pre-sorted according to a Peano-Hilbert curve.
Constructing a Kd-tree takes more time, mainly due to the
rearranging of the particles in every timestep. By using
GPUs, the Kd-tree construction can be accelerated up to 10

Table II
FORCE CALCULATION USING A PREVIOUSLY CONSTRUCTED TREE

TIMES IN MS

N. Particles 250k 500k 1M 2M
Xeon X5650 456 966 1996 4145
GeForce GTX480 236 476 934 1844
Tesla k20c 204 405 801 1588
Radeon HD5870 155 287 572 -
Radeon HD7950 85 169 332 651
GADGET-2 (X5650) 909 1940 4160 8580
Bonsai (GTX480) 40 81 163 325

fold over the execution time on CPUs. The tree building time
of GPUKdTree scales linearly with the number of particles
in the simulation.

Our implementation of the tree walk is noticeably faster
than the one of GADGET-2, when using the same hard-
ware. It also shows better scalability than GADGET-2 with
increasing problem sizes. Even more, executing the treewalk
of our implementation on GPUs gives another speedup of
up to 6 times over the CPU. We achieve a throughput of up
to 3 Mparticles/s which is the highest performance reached
on an AMD GPU that we are aware of. However, Bonsai
achieves an even higher performance using NVIDIA GPUs.
This shows, that Bonsai’s breadth-first tree walk fits the GPU
architecture better than our implementation, performing a
depth-first walk. However, Bonsai also shows a much higher
scatter in relative force errors. That leads to a few particles
with a quite high error.

Comparing the octree and Kd-tree structure in terms
of accuracy, our observations show, that using a Kd-tree
with a good heuristic (VMH), a moderate accuracy can
be reached with very few interactions. Using a Kd-tree
instead of an octree does not have a negative effect on the
relative force error distribution, as our results show a slightly
better behavior than the ones obtained with GADGET-2. The
validity of GPUKdTree is also underlined by our energy
conservation tests.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their valuable comments and suggestions to improve the
quality of the paper. This work has been partially funded by
Interreg4 and FWF as part of the EN-ACT project (P7030-
015-030) and doctoral school - Computational Interdisci-
plinary Modelling FWF DK-plus (W1227). The authors
acknowledge the UniInfrastrukturprogramm of the BMWF
Forschungsprojekt Konsortium Hochleistungsrechnen.

REFERENCES

[1] P. E. Kyziropoulos, C. K. Filelis-Papadopoulos, and G. A.
Gravvanis, “N-body simulation based on the particle mesh

method using multigrid schemes,” in FedCSIS, 2013, pp. 471–
478.

[2] J. Harnois-Déraps, U.-L. Pen, I. T. Iliev, H. Merz, J. D.
Emberson, and V. Desjacques, “High-performance P3M N-
body code: CUBEP3M,” MNRAS, vol. 436, pp. 540–559, Nov.
2013.

[3] J. Barnes and P. Hut, “A hierarchical O(N logN) force-
calculation algorithm,” Nature, vol. 324, pp. 446–449, Dec.
1986.

[4] M. S. Warren and J. K. Salmon, “Astrophysical n-body simu-
lations using hierarchical tree data structures,” in Proceedings
of the 1992 ACM/IEEE conference on Supercomputing, ser.
Supercomputing ’92. Los Alamitos, CA, USA: IEEE
Computer Society Press, 1992, pp. 570–576. [Online].
Available: http://dl.acm.org/citation.cfm?id=147877.148090

[5] J. G. Stadel, “Cosmological N-body simulations and their
analysis,” Ph.D. dissertation, University Of Washington, 2001.

[6] V. Springel, N. Yoshida, and S. D. White,
“GADGET: a code for collisionless and gasdynamical
cosmological simulations,” New Astronomy, vol. 6,
no. 2, pp. 79–117, Apr. 2001. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S1384107601000422

[7] V. Springel, “The cosmological simulation code gadget-2,”
Monthly Notices of the Royal Astronomical Society, vol.
364, no. 4, pp. 1105–1134, Dec. 2005. [Online]. Available:
http://doi.wiley.com/10.1111/j.1365-2966.2005.09655.x

[8] L. Nyland, M. Harris, and J. Prins, “Fast n-body simulation
with cuda,” in GPU Gems 3, H. Nguyen, Ed., 2007, ch. 31.

[9] E. Elsen, M. Houston, V. Vishal, E. Darve, P. Hanrahan, and
V. S. Pande, “Poster reception - n-body simulation on gpus,”
in SC, 2006, p. 188.

[10] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian,
M. Houston, and P. Hanrahan, “Brook for gpus: stream
computing on graphics hardware,” ACM Trans. Graph.,
vol. 23, no. 3, pp. 777–786, Aug. 2004. [Online]. Available:
http://doi.acm.org/10.1145/1015706.1015800

[11] P. Hut, J. M. Arnold, J. Makino, S. L. McMillan, and T. L.
Sterling, “Grape-6: A petaflops prototype,” in proceedings of
the 1997 Petaflops Algorithms Workshop (PAL’97), 1997.

[12] T. Hamada, T. Narumi, R. Yokota, K. Yasuoka, K. Nitadori,
and M. Taiji, “42 tflops hierarchical n-body simulations on
gpus with applications in both astrophysics and turbulence,”
in Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, ser. SC ’09.
New York, NY, USA: ACM, 2009, pp. 62:1–62:12. [Online].
Available: http://doi.acm.org/10.1145/1654059.1654123

[13] T. Hamada and K. Nitadori, “190 tflops astrophysical n-body
simulation on a cluster of gpus,” in SC, 2010, pp. 1–9.

[14] P. Jetley, L. Wesolowski, F. Gioachin, L. V. Kalé, and T. R.
Quinn, “Scaling hierarchical n-body simulations on gpu clus-
ters,” in SC, 2010, pp. 1–11.

[15] M. S. Warren, “2hot: An improved parallel hashed oct-tree n-
body algorithm for cosmological simulation,” in Proceedings
of SC13: International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’13.
New York, NY, USA: ACM, 2013, pp. 72:1–72:12. [Online].
Available: http://doi.acm.org/10.1145/2503210.2503220

[16] J. Bédorf, E. Gaburov, and S. P. Zwart, “A sparse octree grav-
itational n-body code that runs entirely on the gpu processor,”
J. Comput. Physics, vol. 231, no. 7, pp. 2825–2839, 2012.

[17] I. Wald and V. Havran, “On building fast kd-trees for ray
tracing, and on doing that in O(N log N),” in Proceedings of
the 2006 IEEE Symposium on Interactive Ray Tracing, 2006,
pp. 61–69.

[18] I. Wald, W. R. Mark, J. Günther, S. Boulos, T. Ize, W. Hunt,
S. G. Parker, and P. Shirley, “State of the art in ray tracing
animated scenes,” in STAR Proceedings of Eurographics
2007, D. Schmalstieg and J. Bittner, Eds. The Eurographics
Association, Sep. 2007, pp. 89–116.

[19] K. Zhou, Q. Hou, R. Wang, and B. Guo, “Real-time kd-tree
construction on graphics hardware,” in ACM SIGGRAPH
Asia 2008 papers, ser. SIGGRAPH Asia ’08. New York, NY,
USA: ACM, 2008, pp. 126:1–126:11. [Online]. Available:
http://doi.acm.org/10.1145/1457515.1409079

[20] H. Nguyen, GPU Gems 3, 1st ed. Addison-Wesley Profes-
sional, 2007.

[21] J. W. Wadsley, J. Stadel, and T. Quinn, “Gasoline: a flexible,
parallel implementation of TreeSPH,” New astronomy, vol. 9,
pp. 137–158, Feb. 2004.

[22] T. Quinn, N. Katz, J. Stadel, and G. Lake, “Time stepping
N-body simulations,” ArXiv Astrophysics e-prints, Oct. 1997.

[23] L. Hernquist, “An analytical model for spherical
galaxies and bulges,” The Astrophysical Journal,
vol. 356, p. 359, Jun. 1990. [Online]. Available:
http://adsabs.harvard.edu/doi/10.1086/168845

[24] W. Dehnen, “Towards optimal softening in three-dimensional
N-body codes - I. Minimizing the force error,” MNRAS, vol.
324, pp. 273–291, Jun. 2001.

[25] I. Grasso, S. Pellegrini, B. Cosenza, and T. Fahringer,
“Libwater: heterogeneous distributed computing made easy,”
in Proceedings of the 27th international ACM conference on
International conference on supercomputing, ser. ICS ’13.
New York, NY, USA: ACM, 2013, pp. 161–172. [Online].
Available: http://doi.acm.org/10.1145/2464996.2465008

[26] P. Thoman, K. Kofler, H. Studt, J. Thomson, and T. Fahringer,
“Automatic OpenCL device characterization: guiding opti-
mized kernel design,” in Euro-Par, 2011, pp. 438–452.

