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Abstract: Neural networks are getting more complex than ever before, leading to resource-demanding
training processes that have been the target of optimization. With embedded real-time applications
such as traffic identification in self-driving cars relying on neural networks, the inference latency
is becoming more important. The size of the model has been identified as an important target of
optimization, as smaller networks also require less computations for inference. A way to shrink a
network in size is to remove small weights: weight pruning. This technique has been exploited in
a number of ways and has shown to be able to significantly lower the number of weights, while
maintaining a very close accuracy compared to the original network. However, current pruning
techniques require the removal of up to 90% of the weights, requiring high amount of redundancy in
the original network, to be able to speedup the inference as sparse data structures induce overhead. We
propose a novel technique for the selection of the weights to be pruned. Our technique is specifically
designed to take the architecture of GPUs into account. By selecting the weights to be removed in
adjacent groups that are aligned to the memory architecture, we are able to fully exploit the memory
bandwidth. Our results show that with the same amount of weights removed, our technique is able to
speedup a neural network by a factor of 1.57X given a pruning rate of 90% while maintaining the
same accuracy when compared to state-of-the-art pruning techniques.
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1 Introduction

Contemporary Al applications are often build using deep neural networks (DNNs). DNNs
have improved over the last years becoming state-of-the-art not only for the majority
computer vision algorithms but also they have been shown to give superior results in
numerous other applications like speech recognition, natural language processing or the
discovery of new drugs. In many of these applications, hard real-time deadlines have to
be met in order to ensure user satisfaction or even prevent disastrous outcomes, e.g., for
self-driving cars. However, to achieve better accuracy, the networks have become also more
complex and the network sizes have grown significantly: While the AlexNet Caffemodel
is over 200 MB in size, the improved VGG-16 Caffeemodel has already grown to more
than 500 MB [HMD15]. More complex networks are composed of more layers and layers
have become bigger, leading to resource-demanding training processes that have been the
target of optimization in the past. However, for embedded real-time applications (e.g., traffic
identification and object detection in self-driving cars) relying on neural networks, the
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inference latency is more important. The size of a model has been identified as an important
target of optimization as the size is directly related to the number of operations necessary
for inference.

Research has shown that models contain a considerable amount of redundancy [Del3].
Many connections in the neural network that represent the weights have no or only a minor
role when deriving the result. These weights can be removed without affecting the accuracy
of network significantly [HMD15; LDS90].

The optimization process of removing weights from a neural network is called weight
pruning. The general concept of weight pruning is shown in Figure 1. All weights below a
certain threshold, in this example 0.3, are removed from the network. Using this approach
we can learn the important connections in the network. The result is a new network that
contains only the relevant connections of the original network while connections with a
negligible influence have been removed. Weight pruning is able to improve the memory
usage, as less weights need to be stored in memory. Furthermore, the number of operations
needed to compute the result of the network is reduced. The number of weights directly
translates to the memory usage and is also closely related to the number of operations
needed.

weight
treshhold 0.3

Fig. 1: Weight pruning removes weights below a certain threshold from a neural network.

We propose to use a new technique for weight pruning that overcomes limitations of
the state-of-the-art pruning for GPUs [Yul7]. Memory-aware weight pruning is able to
accelerate the inference time of deep neural networks by removing weights in continuous
groups of multiple weights. These groups are optimized to match the memory architecture
of GPUs.

In particular, we make the following contributions: 1. a novel weight pruning technique for
neural networks on GPUs; and 2.an evaluation of our technique in terms of inference time
and accuracy of the network.
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This paper is organized as follows: In Section 2 the related work is introduced and we relate
our work to the state-of-the-art. Section 3 introduces our technique for pruning of weights.
We describe the experimental setup in Section 4 and show the results in Section 5. Finally,
we conclude our work in Section 6.

2 Related Work

Neural networks contain a significant amount of redundant information. Therefore, the
computational and memory requirements can both be optimized without a loss in accu-
racy [Del3].

Redundancy in neural networks can be reduced using different techniques. One approach
is quantization. By using less bits to store the weights of the network, the overall storage
requirements are lowered. Gupta et al. use 16 bit fixed-point number representation for for
the calculations of their neural network. [Gul5]. Gong et al. [Go18] show that a pre-trained
neural network can be quantized to 8-bit without the necessity of having to retrain the
network.

Another popular technique is pruning. Pruning is the removal of filters, weights or whole
neurons from a network. The conceptual idea of removing weights is quite old [LDS90].
Pruning can be implemented in a variety of ways: One method is to remove complete
filters from Convolutional Neural Networks [Hul8; Lil7; Mo17]. Learning the important
connections by first removing weights and then retraining the network was first shown
by [Hal5]. Yu et al. [Yul7] show that by exploiting the Compressed Sparse Row format
on single-instruction-multiple-data (SIMD) units of a microcontroller, pruning can be
implemented by removing connections between two neurons. However, the authors learned
that weight pruning on GPUs actually slows down the inference time. This deceleration
is attributed to the overhead due to sparse data structures which can only be overcome
by a pruning rate of 97%. However, pruning rates of more than 90% have shown to lead
to a strong decrease in accuracy [Hal5; Yul7] and, therefore, weight pruning was not
implemented on GPUs.

3 Weight Pruning for Deep Neural Networks on GPUs

In this work, we optimize weight pruning for the use on GPUs. GPUs have a very distinctive
memory architecture, where accesses to the global memory have a high latency and the
memory width is wide (e.g., 128 byte). The latency can be hidden by the massively parallel
architecture of GPUs. The wide memory architecture connects the density of the information
in global memory with the efficiency of memory bandwidth utilisation: In a sparse data
layout where 1 out of 16 bytes is requested from memory, the bandwidth utilisation is the
same as for a request of 16 bytes. Additionally, the memory architecture requires threads to
access the memory in a coalesced manner.
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Our approach for memory-aware weight pruning takes the distinct memory architecture of
GPUs into account. Instead of pruning individual weights without considering the memory
architecture, we propose to treat the weights in groups: First, the weights are organized
in groups of adjacent weights with a configurable size. Then, all weights in a group are
aggregated and then evaluated. All groups with an aggregated value below a defined
threshold are removed from the network. The threshold is determined by the aggregated
values of the groups in order to achieve a target pruning rate. Afterwards, the remaining
groups are transferred to the compressed sparse row format (CSR). We use this format to
be able to use sparse matrix computations in order to accelerate the computations. Sparse
matrix-matrix multiplications are optimized to exploit matrices where only a small number
of values is different from zero. However, the sparse formats come with some overhead.

A B C D

grouping group evaluation pruning retraining

Fig. 2: The subsequent steps of our Memory-aware Weight Pruning technique.

An overview of our technique is depicted in Figure 2. First, we arrange all weights in groups
according to the selected group size g in step (A). Then we evaluate the aggregated weight
of each group in step (B). In step (C) we perform the actual removal of weights. First, we
calculate the threshold 7 necessary to achieve a given pruning rate and then we remove all
weights of all groups with a smaller aggregated weight. Finally, the network is retrained in
step (D).

The advantage of using adjacent groups of weights is that they can be loaded at the same
time in memory. This ensures that the available memory bandwidth to global memory is
used efficiently. In order to be able to evaluate the significance of a group of weights we
need to aggregate the weights in the group. We use the RMS (root mean square) function to
calculate the aggregated weight of a group, in the same way as related work (e.g., [Yul7]).
The motivation is that a high value of a weight has a strong influence on the activation
of the neuron in the next layer and that high values will be further amplified by the RMS
aggregation of weights.

However, we evaluated different weight aggregation functions (root mean square, arithmetic
mean, median, random) and we were not able to observe significant differences in in terms
of their influence on the final accuracy of the retrained network. Therefore, we assume that
the selection of the groups is not as critical as it might look but the pruning rate and the
retraining dictate the accuracy.

The weight matrix stored in CSR format is multiplied with a dense matrix or vector. The
weight groups are selected consecutivly within a row of the matrix and with an offset that is
a multiple of the group size. We show an example of the grouping step A in Equation 1.
Weight matrix M is a 4 X 4 matrix. The round brackets indicate the weight groups with a
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group size g = 2. The matrix contains the weights w which form the groups G. The group
dimension of the matrix M is 4x2. Gy, is the group consisting of the of weights w; | and
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In step B the aggregated weight of each group is calculated.
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Next, a threshold is defined. The aggregated weights of the groups are sorted by value
to select groups with the smallest influence (smallest absolute value). Depending on the
pruning rate the threshold is selected. The groups which are below this threshold value are
set to 0. In our example, after the groups have been set to 0, the matrix has the following

form:
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In step D the matrix M), is converted to the CSR format. The matrix takes the following

form:

A=[wy1 waa waz was waz waal

JA=[0 1 2 3 2 3]

IA=[0 0 4 4 6]

The new representation of the matrix consists of A, JA and IA. It is CSR format and contains
only the weights of the neural network that are greater than zero. These are the weights that
were selected in step B and C and will be used later.
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Tab. 1: Details of our system used to conduct the results

Hardware Model
CPU Intel Core i5-7200U
GPU NVIDIA Geforce GTX 950M
GPU main memory 2GB
Software Version
Ubuntu 16.04.5 LTS
CUDA 9.0.176
Python 352
Keras 2.2.4
TensorFlow 1.10.1

4 Experimental Evaluation

In this section we briefly introduce our experimental evaluation. First, we examine how to
measure the execution time, then we explain how we measure the accuracy of the neural
network.

4.1 Performance

As our pruning technique is optimized for fully connected layers and the inference of fully
connected layers is based on matrix-matrix multiplications we conduct our performance
evaluation using a matrix-matrix multiplications benchmark. All our experiments are
performed using an NVIDIA Geforce GTX 950M GPU. We execute the matrix-matrix
multiplication calculations in CSR format on the graphics card. The conventional calculation
of matrix-matrix multiplications is called dense matrix-matrix multiplication below, and we
use NVIDIA’s implementation for these multiplications [Nv12].

To calculate the matrix-matrix multiplication on the GPU and to measure the execution time
we use CUDA 9[Nv18]. The sparse matrix-matrix multiplications are performed with the
NVIDIA’s cuSPARSE library. The dense matrix-matrix multiplications are performed with
the library cuBLAS.

In our benchmark two matrices of dimensions 4096 x 4096 and 4096 x 50 are multiplied
with each other. The matrix sizes are chosen to achieve comparability with the work of
Yu et al.[Yul7] The pruned weights are merged into the summarized format described in
Section 3. For each of our performance experiments we measure the kernel execution time
only, as this share of the overall execution time is the predominant part.
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cuSparse offers the CSR and HYB sparse formats for calculations. For the CSR format, the
library offers a matrix-matrix multiplication where the first matrix is a sparse matrix and the
second matrix is a dense matrix. The HYB format is a mix of ELL format and COO format.
Unfortunately, for HYB format, cuSparse offers no support for matrix-matrix multiplication
but only a function for a matrix vector multiplication. For this reason, the CSR format was
chosen. In the calculation of the inference of a fully connected neural network, above all, the
matrix-matrix multiplication is the predominant part of work load. The addition of bias has,
according to our investigations, only a minor role. We do not evaluate our pruning technique
in terms of training time. The total training time of the network is increased, because the
retraining time of the pruned network is added to the training time of the network.

4.2 Accuracy

In this section we describe how the accuracy of the network was determined. We use the
MNIST dataset [LC19] that consists of 60,000 images of handwritten digits. Each image has
a size of 28x28 pixels and can belong to 1 of 10 categories spanning the numbers between 0
and 9. The data set is randomly separated into two distinct subsets: 1) training data (54 000
images) and 2) test data for validation (6 000 images) in order to avoid over-fitting.

Tab. 2: Structure of our neural network

Layer part  Layer type Activation function  Size
input fully connected  ReLU 784
hidden fully connected ReLU 128
hidden fully connected ReLU 128
hidden fully connected  ReLU 256
hidden fully connected ReLU 256
hidden fully connected ReLU 512
hidden fully connected  ReLU 512
output fully connected  Softmax 10

To evaluate our technique we use a neural network that consists of eight fully connected
layers. This network serves the purpose to allow us to assess our technique. The structure of
our network is shown in Table 2. Each of the 784 (= 28 x 28) pixels represents an input of
the input layer. We use the stochastic gradient descent (SGD) as optimization function.

First, we have to train the network and therefore we train the model for 3000 epochs using
the training data set before we start the pruning process. In order to study the effects of the
group size the weight matrices were subdivided into different group sizes during the pruning
process and then the root-mean-square (RMS) is determined for each group. We implement
our technique using the Keras API with the TensorFlow backend. When the aggregated
weight of the groups is determined the groups are sorted by the aggregated weight. Then we
set the threshold in a way such that the given pruning rate is reached. Finally, the aggregated
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weights with an RMS smaller than the threshold are removed. After pruning, we retrain the
neural network over 6000 epochs. The number of training epochs before and after training
are chosen to match the related work [Yul7].

4.3 Performance

7

—— Dense

—— Sparse, group size 1
6 Sparse, group size 2

| —— Sparse, group size 4
—— Sparse, group size 8
—— Sparse, group size 16
5/ — Sparse, group size 32
Sparse, group size 64
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Fig. 3: Speedup of sparse matrix-matrix multiplication compared to dense matrix-matrix multiplication.
The matrices have the sizes of 4096x4096 and 4096x50.

5 Results

In this section, we discuss the results of our experiments. Figure 3 shows how the performance
is affected when using different pruning rates. Figure 4 shows the accuracy of different
group sizes when setting the pruning rate to 90%. In Figure 5 the first two results are related
to each other.
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Figure 3 shows the speedup of a sparse matrix-matrix multiplication of size 4096 x 4096
by 4096 x 50 for different pruning rates between 80% and 98% and group sizes of 1, 2,
4, 8, 16, 32 and 64. The speedup is calculated by normalizing the execution time of the
pruned network to the execution time of the dense network. We reproduce the work of Yu
et al. and show in their results labeled sparse, group size 1. In our benchmark the sparse
matrix-matrix multiplication at a pruning rate of 94% without grouping was as fast as the
dense matrix-matrix multiplication. A similar pruning rate without grouping was reported
by Yu et al. considered too large, because the accuracy would drop too much. We show that
for a sparse matrix-matrix multiplication with a group size of 32, the speedup is greater
than 1 at a pruning rate of 84% compared to a pruning rate of 94% for the state-of-the-art of
Yu et al. In their work, the lowest reported pruning rate of 90% required more than twice
the time when compared to conventional dense matrix-matrix multiplication. When we
apply our grouped pruning technique, we reach a speedup of 57% achieved given the same
pruning rate.
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Fig. 4: Achieved accuracy per group size of the pruning technique. The pruning rate set to 90%.

In Figure 3 we show that a higher pruning rate leads to a higher speedup in the sparse
matrix-matrix multiplications. The highest speedup is achieved with a group size of 32. We
can attribute the speedup at least partially to the amount of coalesced memory accesses.
Coalesced memory accesses are important on GPUs in order to exploit the memory
bandwidth. The Global Load Efficiency (as reported by NVProf) increases from 67 % to
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Fig. 5: Achieved accuracy in relation to the achieved speedup for different group sizes when setting
the pruning rate to 90%.

82 % for a group size of 1 if the pruning rate is increased from 80 % to 98 %. From a group
size of 8 the Global Load Efficiency rises to over 99 %.

5.1 Accuracy

In this section we discuss the accuracy achieved with different group sizes at 90% pruning
rate. Figure 4 shows the accuracy of the network shown in Table 2. The horizontal line
shows the accuracy of accuracy comparable to trained network that was not pruned. The
blue dots show the accuracy of the networks, which were pruned with a pruning rate of
90%. The figure shows that although the pruning rate was set to 90% for all networks, the
accuracy decreases the larger the group size. A sharp decline in accuracy can be observed
as the group size increases. With smaller group sizes, the accuracy of the network could be
maintained or even slightly improved. We assume that the improvement is the consequence
of an increased training time of the network. The accuracy is higher for a small group size
and many groups than for a large group size and fewer groups, as it is more likely to prune
the weights that do not contribute to the activation of the neuron.
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Figure 5 shows the accuracy values of the Figure 4 in relation to the GPU execution times
of sparse matrix-matrix multiplications at 90% pruning rate in Figure 3. The black cross
in the figure denotes the neural network without pruning. The red crosses mark speedup
and accuracy of the neural network when we apply our technique and set the pruning rate
to 90%. The group sizes 1, 2, 4, 8, 16, 32 and 64 of the pruning networks are written
next to the respective cross of the result. It can be seen that a group size of 32, as already
shown in Figure 5, offers the highest speed gain, but severely limits the accuracy of the
network. Group sizes 1 and 2 even cause the neural network to perform the inference slower
because the overhead generated by the CSR format is greater than the speed gain produced
by exploiting Global Load Efficiency of the GPU. When aiming for an accuracy comparable
to the original dense network, a group size of 8 is superior, because at this size the accuracy
of the neural network is 95.30% while the speedup of 49.08% over the dense network. Sizes
1, 2 and 4 have a significantly lower speedup at a pruning rate of 90 %, as shown in the
Figure 3, since the locality of the weights in the memory can not be used here.

6 Conclusion

In this paper, we propose to use memory-aware weight pruning for accelerating the inference
time of deep neural networks on GPUs. Our techniques remove weights in a fully-connected
layer in continuous groups of multiple weights. By aligning the weight groups to match the
size of the memory architecture of current GPUs, we are able to accelerate the inference time
by a factor of 1.5x for a given pruning rate of 90%. Furthermore, by using our technique
we are able to lower the required pruning rate necessary to be profitable on a GPU to 84%,
while state-of-the-art pruning requires a pruning rate as high as 94%. We explore how the
group size affects the accuracy and what group size is optimal when given a target accuracy.
In future work we will investigate different ways of determining the ranking of the weight
groups, as our observation that even randomly selected weight groups result in an equal
accurate network is very interesting. We will explore the design space given by different
matrix sizes in the matrix-matrix multiplications. Additionally, we will be researching
domain-specific sparse matrix representations in order to exploit the distinct properties of
sparse neural networks. We plan to study the effects of our approach on different networks,
new GPU generations and more complex applications.
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