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ABSTRACT
Dynamic frequency scaling is broadly available among different

modern computer architectures, making it possible to improve the

performance and energy efficiency of an application by carefully

setting the core frequency. However, while an exhaustive tuning is

feasible on simple single-kernel applications, in real-world appli-

cations comprised of multiple tasks, the set of possible frequency

setting combinations is too large to be exhaustively evaluated.

This work deals with the problem of optimizing a multi-task

GPU application with frequency scaling. We focus on different

scalarizations of the problem by optimizing for performance, energy

consumption, as well as energy-delay product (EDP) and energy-

delay-two product (ED
2
P). We propose FLEXDP, a new flexible

framework that finds the optimal core-frequency configuration over

multiple kernels, allowing multiple frequency changes between

kernel executions, and taking change overheads into account.

The proposed approaches are evaluated on an NVIDIA Titan X.

Experimental results on five applications demonstrate that FLEXDP

outperforms the default and autoboost configurations with respect

to performance, energy efficiency, EDP, and ED
2
P.
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1 INTRODUCTION
Energy efficiency is one of the most critical aspects of modern

computing systems. To cope with it, hardware vendors have imple-

mented a variety of techniques that help the users to reduce the

energy consumption of an application while trying to minimize its

impact on performance.
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Dynamic voltage and frequency scaling (DVFS) is a technique that
aims at decreasing the power consumption by dynamically adjust-

ing voltage and frequency. On recent NVIDIA GPUs, the NVIDIA
Management Library (NVML) [6] provides an API for monitoring

and managing power state as well as changing the core frequency.

These features pave the way to optimization that focuses not only

on performance, but also on minimizing the energy consumption

of a program. Many research works have recently addressed the

energy and the performance optimization problem of a GPU appli-

cation through frequency scaling, e.g., by using machine learning

with static analysis [3] or performance counters [1, 5].

However, the optimization of multi-task GPU applications comes

with additional challenges. First, the optimal frequency setting is

kernel-dependent, therefore a frequency that is optimal for a kernel

may not be optimal for others. Secondly, changing the frequency

incurs in an overhead. Finally, it is also not realistic to perform

an exhaustive search of all frequency combinations on multi-task

applications. To solve these challenges we propose FLEXDP, an

optimization framework for multi-task GPU applications. FLEXDP

requires kernel sampling for kernel characterization with respect

to energy, performance, and two scalarized metrics: the energy-
delay product (EDP) and the energy-delay2 product (ED2

P), which

are largely-used in the context of energy efficiency evaluation [7].

Overall, our work makes the following contributions:

• We frame the problem of selecting a fixed frequency on GPU

programs made of multiple kernels as a constrained optimiza-

tion problem: we optimize it for energy consumption, perfor-

mance, and two multi-objective scalarizations that trade off en-

ergy against performance: EDP and ED
2
P.

• We introduce FLEXDP, which extends the previous optimization

problem to handle frequency change between kernels, i.e., dy-

namic frequency optimization. This framework takes frequency

change overheads into account and finds efficient configurations

for all the four objectives among the set of all possible allowed

frequency changes.

• We implement our approach using NVML and experimentally

evaluate its quality on five applications including both synthetic

benchmarks and applications.

2 FREQUENCY OPTIMIZATION FRAMEWORK
Given an input application with𝑚 kernels 𝑘1, . . . , 𝑘𝑚 , our optimiza-

tion workflow is composed of the following three steps:

(1) For each kernel 𝑘𝑖 , we profile both the performance and energy

consumption so that all values of 𝑓𝑝 (𝑥𝑖 ) and 𝑓𝑒 (𝑥𝑖 ) are known
for the per-kernel core frequency 𝑥𝑖 ∈ [𝑐𝑚𝑖𝑛, 𝑐𝑚𝑎𝑥 ]. To avoid

sampling the whole frequency space, we limit profiling to few

frequencies and fit, respectively, a linear model for performance
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(i.e., 𝑓𝑝 (𝑥𝑖 ) = 𝑎𝑖𝑥𝑖 + 𝑏𝑖 ), and a quadratic model for energy

consumption (i.e., 𝑓𝑒 (𝑥𝑖 ) = 𝑎𝑖𝑥
2

𝑖
+ 𝑏𝑖𝑥𝑖 + 𝑐𝑖 ).

(2) For each kernel 𝑘𝑖 and 𝑥𝑖 ∈ [𝑐𝑚𝑖𝑛, 𝑐𝑚𝑎𝑥 ], we calculate the EDP
and ED

2
P values using:

𝑓𝐸𝐷𝑃 (𝑥𝑖 ) = 𝑓𝑝 (𝑥𝑖 ) 𝑓𝑒 (𝑥𝑖 ) (1)

𝑓𝐸𝐷2𝑃 (𝑥𝑖 ) = 𝑓𝑝 (𝑥𝑖 )2 𝑓𝑒 (𝑥𝑖 ) (2)

(3) Finally, we apply our optimization algorithms on all four ob-

jective functions (𝑓𝑝 , 𝑓𝐸𝐷𝑃 , 𝑓𝐸𝐷2𝑃 and 𝑓𝑒 ) over the𝑚 kernels to

find the best core frequency setting for the input application.

In this paper, we present three different strategies to solve the

problem in step (3): fixed-, always- and flexible-change.
Fixed Frequency Optimization. We describe the optimization

problem formulated to find the best single frequency of a multi-task

application, i.e. without allowing frequency change between tasks.

In terms of performance, we assume to have a program that

executes𝑚 kernels. For each kernel 𝑘𝑖 , its performance value 𝑓𝑝
is described by a linear function with coefficients 𝑎𝑖 and 𝑏𝑖 and

𝑥 ∈ [𝑐𝑚𝑖𝑛, 𝑐𝑚𝑎𝑥 ]. Thus, we formulate the performance problem as

a constrained optimization problem in which the core frequency 𝑥

is the solution for minimizing the application performance function∑𝑚
𝑖=1 𝑓𝑝 . As all performance functions have positive coefficients

𝑎, the solution to this problem is trivial: 𝑥 = 𝑐𝑚𝑎𝑥 . The energy

optimization problem is formulated in the same method with per-

formance, while each per-kernel energy values 𝑓𝑒 are described by

a quadratic function with a unique minimum, which depends on

the specific kernel.

In the case of the two energy-delaymetrics EDP and ED
2
P, which

are calculated using Eq.1 and 2, we return the optimal frequency

value for the specific objective function, i.e., the frequency value

that minimizes the objective function.

For a given predefined objective metric, solved by the previ-

ously discussed optimization framework, we define the function

CostFixed(𝑘1, . . . , 𝑘𝑚), which returns the cost for the optimal fre-

quency 𝑥 that minimizes the objective value, and the function

FreqFixed(𝑘1, . . . , 𝑘𝑚), which returns the actual frequency 𝑥 .

Always-Change Frequency Optimization. An alternative solu-

tion is to (locally) find the best configuration for each task/kernel

and allow to set the frequency before each kernel invocation. We

call this heuristic always-change, meaning that, before each kernel

execution, we always set the core frequency to the one that mini-

mizes the objective function of that specific kernel. This solution

is optimal if the frequency changing overhead is proportionally

very small with respect to the kernel’s objective value (e.g., runtime

or energy consumption). On the other hand, this strategy always

incurs in𝑚 − 1 frequency changes, where𝑚 is the number of ker-

nels in the application, and does not implement any attempt to

reduce the number of frequency change for instance if the optimal

frequency of consecutive task is very close to each other.

Flexible Frequency Optimization. The optimization strategies

discussed so far represent two opposite approaches. They are bene-

ficial, respectively, in case where the overhead is very large (fixed-
change) or very small (always-change). Now we introduce a smarter

flexible-change formulation, which is capable to find a solution

where frequency changes are accurately performed only when they

incur in a real benefit in terms of the objective function.

Given a sequence of𝑚 kernels < 𝑘1, . . . , 𝑘𝑚 > and the overhead

cost 𝜖 , we introduce a new strategy that handles the case where flex-

ible frequency changes are allowed. The approach comprises three

algorithms and assumes to have access to two functions CostFixed

and FreqFixed, which return respectively the cost and frequency

of the optimal frequency configurations for𝑚 kernels.

Algorithm 1 One Frequency Change at Minimum Cost

OneChange(< 𝑘1, . . . , 𝑘𝑚 >, 𝜖)
1: 𝑚𝑖𝑛 ← +∞
2: 𝑏𝑒𝑠𝑡 ← 0

3: for 𝑗 ← 1,𝑚 − 1 do ⊲ Cost of freq. change after kernel 𝑗

4: 𝑙𝑒 𝑓 𝑡 ← CostFixed(< 𝑘1, . . . , 𝑘 𝑗 >)
5: 𝑟𝑖𝑔ℎ𝑡 ← CostFixed(< 𝑘 𝑗+1, . . . , 𝑘𝑚 >)
6: 𝑐𝑜𝑠𝑡 ← 𝑙𝑒 𝑓 𝑡 + 𝑟𝑖𝑔ℎ𝑡 + 𝜖
7: if 𝑐𝑜𝑠𝑡 <𝑚𝑖𝑛 then
8: 𝑚𝑖𝑛 ← 𝑐𝑜𝑠𝑡

9: 𝑏𝑒𝑠𝑡 ← 𝑗

10: return 𝑏𝑒𝑠𝑡

The first algorithm, called OneChange, returns the position of

the optimal frequency change if we allow only one change after

the first kernel execution (i.e., two frequencies are used during

the program execution). In detail, this procedure evaluates the

objective function of all𝑚 − 1 possible splits of the kernel, so that

the first 𝑗 kernels use a frequency different than the next𝑚 − 𝑘 .
We use CostFixed to calculate the optimal frequency for each of

the two partitions. This function returns a kernel index 𝑖 , which

indicates that the optimal strategy that minimizes the cost must

change the frequency after kernel 𝑘𝑖 and before kernel 𝑘𝑖+1. Note
that OneChange returns 0 if we have 0 or 1 kernel; it returns 1 if

we have two kernels, as this is the only possible frequency change

we can perform. It is simply possible to get the frequency value

for the two lists of kernels by calling FreqFixed(𝑘1, . . . , 𝑘𝑏𝑒𝑠𝑡 ) and
FreqFixed(𝑘𝑏𝑒𝑠𝑡+1, . . . , 𝑘𝑚).

Algorithm 2 Cost of Multiple Frequency Changes

CostFC(< 𝑘1, . . . , 𝑘𝑚 >, 𝑆, 𝜖)
1: 𝑐𝑜𝑠𝑡 ← 0

2: 𝑙 ← 1

3: for 𝑖 ← 0, 𝑆 .length - 1 do
4: 𝑟 ← 𝑆 [𝑖 ]
5: 𝑐𝑜𝑠𝑡 ← 𝑐𝑜𝑠𝑡 + CostFixed(< 𝑘𝑙 , . . . , 𝑘𝑟 >) + 𝜖
6: 𝑙 ← 𝑟 + 1
7: 𝑐𝑜𝑠𝑡 ← 𝑐𝑜𝑠𝑡 + CostFixed(< 𝑘𝑙 , . . . , 𝑘𝑚 >)
8: return 𝑐𝑜𝑠𝑡

As the flexible strategy allows for multiple frequency changes,

we need a way to calculate the cost of multiple frequency changes,

including the overheads. We define 𝑆 as a list of indices referring

to when the frequency is changed. E.g., for 𝑆 =< 2, 3, 7 > we have

three frequency changes after kernel 𝑘2, 𝑘3, and 𝑘7. Elements in 𝑆

are ≤ 1 and < 𝑚. Given 𝑆 the list of kernel indices where we enable

the frequency change, we define a new algorithm, CostFC, which

calculates the overall cost for𝑚 kernels.

Finally, the FlexibleChange algorithm uses a recursive divide-

and-conquer strategy to determine which frequency changes are

beneficial, returning a list of split indices. This recursive procedure

starts with the baseline program comprised of only one kernel,

for which an empty list is returned. Then, for a program with at

least two kernels, we evaluate the cost of cases with and without

Preprint — do not distribute.
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Figure 1: Per-kernel evaluation for Matmul-Reduction Pattern (left) and SRAD (right).

Algorithm 3 Flexible Change Algorithm

FlexibleChange(< 𝑘1, . . . , 𝑘𝑚 >, 𝜖)

⊲ Base case: only one kernel, no change is possible

1: if𝑚 = 1 then
2: return ListEmpty() ⊲ Return an empty list

⊲ Case 1: No frequency change

3: 𝑐𝑜𝑠𝑡𝑁𝑜𝐶ℎ𝑎𝑛𝑔𝑒 ← CostFixed(< 𝑘1, . . . , 𝑘𝑚 >)
⊲ Case 2: At least one frequency change

4: 𝑗 ← OneChange(< 𝑘1, . . . , 𝑘𝑚 >, 𝜖)
5: 𝐿 ← FlexibleChange(< 𝑘1, . . . , 𝑘 𝑗 >, 𝜖)
6: 𝑅 ← FlexibleChange(< 𝑘 𝑗+1, . . . , 𝑘𝑚 >, 𝜖)
7: 𝑐𝑜𝑠𝑡𝐶ℎ𝑎𝑛𝑔𝑒 ← CostFC(< 𝑘1, . . . , 𝑘 𝑗 >, 𝐿, 𝜖) + CostFC(< 𝑘 𝑗+1, . . . , 𝑘𝑚 >

, 𝑅, 𝜖) + 𝜖
⊲ Cost comparison

8: if 𝑐𝑜𝑠𝑡𝐶ℎ𝑎𝑛𝑔𝑒 < 𝑐𝑜𝑠𝑡𝑁𝑜𝐶ℎ𝑎𝑛𝑔𝑒 then
9: 𝐿 ← ListInsert(𝐿, 𝑗)
10: return ListMerge(𝐿, 𝑅) ⊲ Return 𝐿, 𝑗 and 𝑅

11: else
12: return ListEmpty() ⊲ No change, empty list

frequency changes. In case of no change, the cost is returned by

the CostFixed function. In case of changes, we first calculate the

index of the best split 𝑗 by using the OneChange algorithm. Then,

we recursively apply FlexibleChange on the two lists of kernels

obtained by splitting at 𝑗 . The recursive step returns the two lists

of indices 𝐿 and 𝑅, for which the overall cost is calculated thanks

to the function CostFC. After cost comparison, an empty list is

returned if no change gives a smaller cost; otherwise, it returns

a list including the splits on the left and right sublists, plus the

new split on 𝑗 . At the end, FlexibleChange finds a sequence of

frequency changes that minimize the objective function for the𝑚

input kernels.

3 EXPERIMENTAL EVALUATION
We evaluate the proposed optimization framework on an NVIDIA

GTX Titan X and compare these strategies against two basic ap-

proaches based on default frequency (1001MHz) and the autoboost
configuration. The GTX Titan X supports four memory frequencies

and 85 core frequencies, while this work focuses on varying core

frequency and fixing memory frequency at 3505 MHz.

We evaluate five OpenCL applications with a different number

of kernels and characterizations and take the frequency changing

overheads into account. Those applications are two synthetic ap-

plications made of a different sequence of matrix-multiply (M) and

reduction kernels (R), bucketsort (three kernels) and Speckle Reduc-

ing Anisotropic Diffusion (SRAD, six kernels) belong to the Rodinia

benchmark [2], and a tensor particles computation [4] (four ker-

nels). For each application, we consider four scenarios of interest:

performance, ED
2
P, EDP, and energy consumption. The detailed

results of each kernel for MRMRMR pattern and SRAD are pre-

sented in the next paragraphs, while the general discussion of all

five applications is available in Sec. 4.

Matmul-Reduction Pattern: MRMRMR. Matrix-multiplication

and reduction kernels are the base of synthetic application bench-

marks. Fig. 1 (left) shows the four objectives with increasing core

frequency. The runtime benefits greatly from core frequency scal-

ing for both kernels. Two trade-offs, ED
2
P and EDP, are optimized

at different frequencies: ED
2
P is minimized at 1189 MHz and 1050

MHz, EDP is minimized at 1189 MHz and 1050 MHz, corresponded

to matmul and reduction kernels. Optimal frequency to minimize

the energy is also different with each kernel: matmul has the best

energy efficiency at 974 MHz, while reduction at 1050 MHz.

Fig. 2a and Fig. 2b indicate the savings in the four objectives

with the three strategies, comparing against the default frequency

configuration and autoboost, separately. In terms of runtime, flex-
ible returns the same configuration as fixed and performs better

than the other three, in particular, improves 2% against default.
For energy efficiency, flexible returns the same configuration as

always and reduces the energy consumption as much as 18.8% com-

paring against autoboost, and also consumes less than default and
fixed. In fact, while for performance the difference between the two

per-kernel optimal frequency leads to a large gain, favoring the

change always strategy, for energy consumption the gain does not

compensate for the overhead of changing. ED
2
P and EDP corre-

spond to two trade-offs in which flexible returns the same optimal

configuration returned by always. In this application, the flexible
algorithm returns a configuration that is the same as either fixed
or change-always strategy.
SRAD. Fig. 1 (right) shows the four scenarios of each kernel (𝑘1, ..., 𝑘6).
In terms of performance, all six kernels benefit greatly from core

frequency scaling with the optimal frequency at 1202 MHz. ED
2
P

is optimized at 974 MHz for 𝑘1, 𝑘5 and 𝑘6, at 1088 MHz for 𝑘2 and

𝑘3, at 1202 MHz for 𝑘4. EDP is optimized at 974 MHz for 𝑘1, 𝑘5 and

𝑘6, at 1012 MHz for 𝑘2 and 𝑘3, and at 1088 MHz for 𝑘4. The best

energy efficiency occurs at 974 MHz for all kernels except 𝑘2.

Fig. 2a and Fig. 2b give the evaluation of the SRAD application.

For performance, all proposed configurations (fixed, always, and
flexible) give similar results. With respect to the ED

2
P and the sole
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Figure 2: Evaluation result.

energy consumption, fixed slightly outperforms always. Here, the
flexible strategy finds the same frequency configuration as fixed.

4 DISCUSSION AND CONCLUSION
Our experimental evaluation provides interesting insight on the

algorithms used for frequency scaling as well as the technical issues

related to the experimental evaluation on an NVIDIA GPU.

The GPU default frequency is a value that is selected to pro-

vide good performance on a broad set of applications. In fact, it

is relatively easy to find a configuration that performs better for

a specific application. Moreover, it only works for performance:

the proposed always, fixed, and flexible strategies are better than
default in minimizing energy consumption.

The autoboost strategy improves over the fixed for performance

but, similarly to default, does not provide configurations that mini-

mize the energy consumption.

Our three proposed strategies are interesting in different as-

pects. The fixed strategy is always at least better than the default.
They both use only one frequency for all the kernels, but our fixed

strategy picks a configuration that is optimal over all kernels. The

flexible strategy always finds the best. In most cases, it is as good

as the best (minimum) of the always and fixed strategy. In a few

cases such as the matmul-reduction pattern 2, it is capable to dis-

cover new frequency configurations that are better than any other

configurations.

From an application perspective, kernels variety — i.e. very dif-

ferent per-kernel characterization in terms of performance, energy,

EDP, or ED
2
P — favors a strategy that is capable to adapt to the

different per-kernel tuning, e.g., change-always. On the other hand,

an application with a very similar kernel will favor fixed frequency

configurations. The interesting aspect of the flexible strategy is that
it adapts to the structure of the application: sometimes it behaves

like the two opposite approaches (e.g., SRAD); sometimes is even

able to find new configurations for mixed-type applications (e.g.,

matmul-reduction pattern 2).

Overall, on a broad range of applications, our proposed optimiza-

tion framework, FLEXDP, improves the performance up to 15.4%

with respect to the default fixed frequency, and 19.7% for energy

efficiency with respect to the autoboost configuration. For EDP

and ED
2
P, we have an improvement compared against the default

frequency (EDP: 7.1%, ED
2
P: 20.5%) and autoboost (EDP: 15.8%,

ED
2
P: 13.1%).
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