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Abstract
Graph analytics play a crucial role in a wide range of fields, includ-
ing social network analysis, bioinformatics, and scientific comput-
ing, due to their ability to model and explore complex relationships.
However, optimizing graph algorithms is inherently difficult due
to their memory-bound constraints, often resulting in poor perfor-
mance on modern massively parallel hardware. In addition, most
state-of-the-art implementations are designed in CUDA for NVIDIA
GPUs, and thus they can not run on supercomputers equipped with
AMD and Intel GPUs. To address these challenges, we propose
SYgraph, a portable heterogeneous graph analytics framework writ-
ten in SYCL. SYgraph provides an efficient two-layer bitmap data
layout optimized for GPU memory, eliminates the need for pre-
or post-processing steps, and abstracts the complexity of working
with diverse target platforms. Experimental results demonstrate
that SYgraph delivers competitive performance against state-of-
the-art frameworks on datasets with up to 21 million nodes and
530 million edges on NVIDIA GPUs while being able to target any
SYCL-supported device, such as AMD and Intel GPUs.

CCS Concepts
• Computing methodologies→ Parallel computing method-
ologies; Graphics processors; • Computer systems organiza-
tion→ Single instruction, multiple data; •Mathematics of com-
puting → Graph algorithms.

Keywords
Graph Analytics, GPU, Parallel Computing, Portability, Bitmap
Frontier

1 Introduction
Graph processing is essential for examining large, complex net-
works in fields such as social network analysis, bioinformatics, and
cybersecurity. These uses underscore the value of graph analytics
to gain insight from interconnected data. Nevertheless, optimizing
graph algorithms on modern parallel hardware is challenging due
to their memory-bound characteristics, which frequently lead to
suboptimal performance.

State-of-the-art graph frameworks like Gunrock [36], Tigr [25],
and SEP-Graph [33] are developed in CUDA, making them specific
to NVIDIA GPUs. This limits their use on other high-performance
GPUs from companies like AMD and Intel. With 7 out of the top 10
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supercomputers now featuring GPUs from these vendors [31], there
is a crucial need for a graph framework that can run efficiently on
diverse hardware platforms.

We propose SYgraph 1, an efficient and portable graph analyt-
ics framework using SYCL and C++20 to tackle these challenges.
SYCL [17] offers an abstraction layer for single-source program-
ming on heterogeneous systems, enabling SYgraph to seamlessly
support multiple GPU backends like CUDA, ROCm, LevelZero and
OpenCL. SYgraph allows developers to write graph analytics code
that runs efficiently on many GPU architectures with a unified
programming style.

SYgraph facilitates developers in efficiently applying graph algo-
rithms via its API. This setup ensures efficient execution of essential
graph algorithms like breadth-first search, single-source shortest
path, betweenness centrality, and connected components, without
requiring deep GPU optimization knowledge, thus broadening its
applicability. SYgraph introduces a Two-Layer Bitmap data struc-
ture that improves the traditional bitmap method, allowing an
integer to represent up to 64 active elements, thereby improving
memory efficiency and GPU resource utilization.

This paper discusses SYgraph’s design and implementation, fo-
cusing on the architectural choices and optimizations that enhance
its performance.

Through thorough benchmarking and comparison, we show
that SYgraph surpasses leading frameworks such as Gunrock[36]
up to 2.10×, Tigr[25] up to 4.53×, and SEP-Graph[33] up to 2.07×
on a dataset consisting of 21 million nodes and 530 million edges
on the NVIDIA V100S GPU. In addition, we emphasize SYgraph’s
capability to support graph analytics tasks on AMD and Intel GPUs,
promoting the growth of heterogeneous GPU systems in this field.
Our results also highlight the differing efficiencies of specific GPU
architectures across various graph datasets.

In summary, this paper makes the following contributions:

• SYgraph, the first portable, heterogeneous graph analytics
GPU framework based on SYCL and C++20, capable to target
different GPU architectures;

• A novel approach to graph frontier management, entirely
designed around a Two-Layer bitmap representation and
integrating a custom load-balancing strategy. This bitmap-
centric approach reduces memory footprint, eliminates pre-
and post-processing overhead, and enables efficient data-
driven traversal operations on GPUs;

• A comparative experimental study of SYgraph against es-
tablished state-of-the-art graph analytics GPU frameworks
on BC, BFS, CC, and SSSP algorithms on different datasets,

1Source code and documentation available at https://github.com/unisa-hpc/SYgraph
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including a performance evaluation across AMD, Intel, and
NVIDIA GPUs.

2 Related Work
Graph processing frameworks have evolved to meet the varied
needs of graph analytics on different platforms. Numerous research
efforts have focused on processing graphs on multi-core systems.
Galois [24] leverages amorphous data-parallelism and optimistic
parallel execution to efficiently run irregular algorithms. GraphIt
[40] uses a domain-specific language and compiler for graph tasks,
enabling optimization by separating algorithm definitions from
scheduling. Similarly, GraphMat [30] offers a high-level API that
turns operations into efficient matrix-vector computations with
CPU parallelism. Ligra [28] aims to use parallel graph traversal
algorithms for shared memory.

2.1 GPU-Based Frameworks
The large-scale parallel processing capabilities of GPUs have been
leveraged by various frameworks to adapt the irregular nature of
graph algorithms for GPU use. There are two main approaches to
graph processing on GPUs. The frontier-based approach involves
a frontier reflecting active vertices or edges during computations.
Within this group are Gunrock [36], a high-performance library
with diverse graph primitives tailored for GPUs, emphasizing user-
friendliness and performance through abstract models. Tigr [25]
optimizes memory access for balanced workloads and high effi-
ciency. SEP-graph [33] focuses on streaming partitioned edges into
GPU memory to enhance bandwidth utilization. Grus [35] provides
a versatile platform for GPU-based graph analytics, with support
for dynamic graph processing. CuSha [20] introduces G-Shards
for improved memory coalescence and divergence reduction. Cu-
Graph [15] is part of the RAPIDS suite, offering graph analytics
algorithms optimized for NVIDIA GPUs. Hornet [12] emphasizes
dynamic graph updates and queries via optimized data structures.
Another common method employs linear algebra for graph oper-
ations. GraphBLAST [39] efficiently uses sparse linear algebra on
GPUs by converting graph tasks into matrix/vector operations, uti-
lizing high-performance libraries. Although all of these frameworks
are tied to CUDA and limited to NVIDIA GPUs, AMD’s HIP enables
porting to ROCm through source-to-source translation. However, it
often requires substantial manual intervention and duplicated code,
increasing complexity. As such, HIP is better suited for migration
than for true portability.

With respect to other GPU-based frameworks, SYgraph is the first
portable framework that offers a unified API, enabling seamless inte-
gration across different hardware architectures.

2.2 Frontier Data Layout and Workload
Balancing

Gunrock [36] uses a dynamic vector for the frontier, enabling flexi-
ble vertex and edge operations during graph traversal. This method
suits graph processing’s irregular nature, where frontier sizes can
change greatly between iterations. To combat workload imbalance,
Gunrock uses advance operations to redistribute workloads among
threads and mixes push-pull traversal strategies to effectively bal-
ance computations. However, it requires post-processing to remove

duplicate nodes for frontier consistency and reallocates memory
when the vector is full. GraphBLAST [39], though centered on linear
algebra, uses a matrix-based layout for the frontier. By translating
graph tasks into sparse matrix operations, it gains from linear al-
gebra library optimizations, efficiently managing large frontiers
through sparse matrix-vector multiplication. Its workload balance
is achieved through the parallel nature of sparse linear algebra.
SEP-graph [33] switches between vector and bitmap layouts to re-
move duplicate nodes and improve execution correctness. To utilize
memory bandwidth fully, it dynamically inputs edges into GPU
memory, adapting execution modes—synchronous/asynchronous,
push/pull, data-/topology-driven—based on workload. This adapt-
ability, however, introduces a runtime overhead sometimes surpass-
ing the algorithm’s computational cost. Tigr [25] offers a different
approach by directly traversing the graph, avoiding the typical fron-
tier model. This reduces complexity but limits flexibility, needing
algorithms specially designed for GPU parallelism. Tigr reduces
imbalance by using Uniform-Degree Tree Transformations (UDT)
to split high-degree nodes into smaller, uniform structures.

In contrast to those works, SYgraph introduces a novel frontier
representation using a bitmap layout optimized for GPUs, alongside a
workload balancing strategy designed specifically for this data layout,
resulting in enhanced memory efficiency while eliminating the need
for post-processing tasks.

SYgraph Gunrock [36] Tigr [25] SEP-Graph [33]

Targeted Arch. Heterogeneous CUDA CUDA CUDA
Pre-Processing No No Yes Yes
Post-Processing No Yes Yes Yes
Data-Layout Two-Layer

Bitmap
Vector Adj. List Vector/Bitmap

Execution Model Sync Sync Sync Sync/Async
Load Balancing Bitmap-

tailored
Dynamic task
redistribution

Node riorgani-
zation

Algorithmic

Table 1: Comparison against the state of the art.

Table 1 provides a comparison table of SYgraph with some of
the state-of-the-art graph analytics frameworks on GPU. Heteroge-
neous means that it supports all SYCL-enabled GPU back-ends.

3 SYgraph Overview
SYgraph is a high-performance graph processing framework that
leverages GPU computational power. It’s a C++ header-only library
that offers primitives for manipulating and analyzing large-scale
graphs efficiently.

As shown in Figure 1, the SYgraph framework is structured into
three layers: the application layer providing the API for developers,
the SYgraph core layer containing the framework’s main implemen-
tation, and the SYCL layer ensuring platform portability.

The SYgraph framework manages a frontier, which is the set of
active vertices or edges during a graph algorithm iteration. Accord-
ing to Wang et al. [36], this approach allows the practical imple-
mentation of complex graph algorithms on a GPU. Our framework
follows the Bulk Synchronous Parallel (BSP) model [16], executing
one of the SYgraph core primitives in each superstep. At the end
of each superstep, the output frontier is updated according to the
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Figure 1: SYgraph architecture.

Function Description

namespace sygraph::operators::

advance::vertices(Graph,
OutFrontier, Functor)

Traverses outgoing edges of all ver-
tices using Functor, storing results in
OutFrontier.

advance::vertices(Graph, Functor) Same as above, without storing the result.
advance::frontier(Graph,
InFrontier, OutFrontier, Functor)

Traverses outgoing edges from
InFrontier using Functor, storing
results in OutFrontier.

advance::frontier(Graph,
InFrontier, Functor)

Same as above, without storing the result.

filter::inplace(Graph, Frontier,
Functor)

Removes elements from Frontier that
fail Functor.

filter::external(Graph,
InFrontier, OutFrontier, Functor)

Copies InFrontier elements passing
Functor into OutFrontier.

compute::execute(Graph, Frontier,
Functor)

Applies Functor to elements in
Frontier.

Functors description

Advance Functor(src, dst, edge_id,
weight) -> Bool

Determines whether the dst vertex
should be added to the frontier.

Filter Functor(id) -> Bool Returns whether a vertex id should re-
main in the frontier.

Compute Functor(id) Operates on a given vertex_id.

Table 2: SYgraph API Overview of Primitives.

computations, maintaining consistency across GPU threads. Al-
though supersteps may have interdependencies, operations within
each step run independently, simplifying integration with existing
applications without needing to address operation synchronization.

An important design principle of SYgraph is enabling data-driven
operations through user-defined C++ lambda functions for each
superstep’s computations. These lambdas integrate with GPU ker-
nel primitives to manage the computational state and update the
output frontier. In BFS, for instance, a lambda checks if a vertex is
visited, ensuring only new vertices are added to the output frontier.

3.1 SYgraph API
The SYgraph API consists of four main components: Primitives,
Frontier, Graph, and Input/Output (IO) API. While the IO API de-
fines a set of functions for reading and writing graphs from and
to files, in this section, we will focus on the other APIs. Table 2
summarizes the primitives methods in the SYgraph API.

Primitives. The SYgraph framework, like Gunrock [36], has three
main primitives for data-driven graph manipulation using a lambda
function that interacts with user data structures. These are advance,

compute, and filter. While typically synchronized, some operations
can run asynchronously, such as two advance functions on separate
graphs. Each primitive returns an event for host-side waits. The
advance primitive is key for graph applications by determining
vertex neighborhoods in active frontiers, requiring load-balancing
strategies for handling irregular graph structures. It can also be
applied to all vertices, such as in initializing Betweenness Centrality.
The compute primitive updates the values of the frontier elements
and is kept separate from the advance because it does not present
the same load balancing challenges. The filter primitive removes
elements from a frontier based on criteria, either in place or by
creating a new frontier.

Frontier. A SYgraph Frontier represents the collection of active
elements in graph computations. Developers can employ a frontier
object for graph primitives as input and output parameters, deter-
mine its status (e.g., count of active elements), and add or remove
elements. Graph algorithms frequently execute operations on the
currently visited vertex set. In such cases, frontier operations aid in
efficiently managing the active vertices during the algorithm’s exe-
cution. Thus, we offer a suite of fundamental frontier API tools for
these tasks. The intersection operator identifies the shared neigh-
borhood of two active node sets. The union operator joins two
active node sets into one frontier (e.g., in graph machine learning
[37]). Subtraction removes specific nodes from a set for focused
analysis or computation (e.g., data cleaning).

Graphs Representations. SYgraph primarily offers CSR and CSC
graph representations [4]. However, the SYgraph API lets users
define their own graph representations by implementing an inter-
face containing the necessary methods and structs for the SYgraph
primitives. Users also need to create an iterator class for vertex
neighbor iteration. Flexibility in graph representation is essential
because modern frameworks improve graph analytics on GPUs
using GPU-optimized graph structures or variations of CSR and
CSC [25]. This flexibility is vital to meet the varied demands of
different applications and datasets. Moreover, user-defined custom
graph representations can improve performance and scalability
in dynamic graphs, which require efficient data structures and al-
gorithms for GPU processing as they evolve with vertex or edge
changes [3, 12].

3.2 SYgraph Core
The SYgraph Core includes various components that together ex-
ecute the API functions. The primitive kernels establish the main
framework for the primitive functions, incorporating user-defined
lambdas. Meanwhile, the frontier kernels provide key operations
for handling frontiers, including applying frontier operators such
as intersection, union, and subtraction, as well as retrieving fron-
tier size, verifying if a frontier is empty, and managing frontiers
by clearing and swapping. The graph manager performs the usual
graph tasks such as obtaining the neighborhood of a vertex, com-
puting the degrees of the vertex, and other graph-related functions.
Furthermore, the device inspector assesses the target GPU on the
fly to fine-tune parameters like thread block size, coarsening factor,
and memory layout. Lastly, the memory manager manages GPU
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memory allocation and deallocation for components such as the
frontier, graph, and temporary data structures.

3.3 SYgraph Backend
Utilizing SYCL, SYgraph easily integrates CUDA, ROCm, OpenCL,
and LevelZero backends. A queue in SYCL is used for submitting
kernels and transferring data with its linked device. Developers
must specify the queue before allocating a graph or frontier object
to select the offloading device.

In SYgraph, Graph and Frontier objects are created using SYCL
Unified Shared Memory (USM) with the malloc_shared alloca-
tor. USM offers a unified memory model that facilitates automatic
data transfers between the host and the device. Additionally, USM
supports setups where GPU and CPU share address space. SYCL’s
abstraction layer enhances portability, but introduces some over-
head, affecting performance, especially on specific hardware. On
AMD hardware, USM is activated by Xnack [1], where we noticed
suboptimal performance. To address this, developers can choose
between USM and explicit memory allocation at compile time.

SYgraph implements primitives using SYCL’s parallel_for,
which assigns tasks to each GPU thread. The advance primitive
uses an nd_range for detailed control over global and local work
sizes, facilitating balanced workload and optimized memory access.
Conversely, compute and filter use a range, which specifies only a
global range, leaving the thread block division to the SYCL compiler.

3.4 Algorithm Implementations
A graph algorithm can be seen as an iterative process that con-
verges as vertex or edge attributes are updated. Convergence is
reached when further iterations cause no major changes, signal-
ing algorithm stability. This applies to basic algorithms such as
Betweeness Centrality (BC), Breadth First Search (BFS), Connected
Components Labeling (CC), and Single Source Shortest Path (SSSP),
where convergence occurs once all nodes are visited and no more
updates are needed, achieved by exploring the graph from a start-
ing point. Implementing graph algorithms with SYgraph involves
focusing on convergence.

Taking advantage of Brandes’ formulation [9], the BC imple-
mentation computes the number of edges through each vertex by
traversing the graph first forward, then backward, from a source
vertex.Much like Gunrock [36], BFS begins at one vertex and creates
new frontiers each iteration via advance operations. Convergence
occurs once all vertices are visited. Our BFS uses the push-based
method, but it is also possible to use both push and pull techniques
as per Beamer et al. [5]. The CC algorithm follows a label propaga-
tion method as outlined by Stergiou et al. [29], where vertices begin
by distributing their labels to neighbors. The process stops when no
label changes occur. The SSSP algorithm employs Bellman-Ford [11]
to calculate the shortest paths from a source vertex to all others by
minimizing path weights. The advance phase resembles the BFS,
moving from one vertex to adjacent ones and updating distance
values. Our SSSP version does not use the Δ-stepping optimization
discussed in [23, 34].

1 using namespace sygraph;
2 void BFS(Graph& G, size_t* dist , vertex_t src){
3 auto in_frontier = makeFrontier <frontier_view_t ::vertex >(G);
4 auto out_frontier = makeFrontier <frontier_view_t ::vertex >(G);
5 in_frontier.insert(src);
6 size_t size = G.getVertexCount ();
7 int iter = 0;
8 while (! in_frontier.empty ()) {
9 operators :: advance :: frontier(G, in_frontier , out_frontier ,
10 [=]( vertex_t u, vertex_t v, edge_t e, weight_t w) {

11 bool visited = dist[v] < (size + 1);

12 return !visited;

13 }).wait();

14 operators :: compute :: execute(G, out_frontier ,

15 [=]( vertex_t v) {

16 dist[v] = iter + 1;

17 }).wait();

18 frontier ::swap(in_frontier , out_frontier);

19 out_frontier.clear ();

20 iter ++;

21 }}

Listing 1: BFS in SYgraph. Keywords specific to SYgraph
within the sygraph namespace are displayed in purple, while
yellow lines are offloaded on the GPU.

3.5 SYgraph in Action
Listing 1 outlines the main elements of the framework, such as the
frontier-based execution model and the operators used to update
and calculate graph states. The highlighted lines run on the GPU.
Line 2’s Graph object is linked to a queue and specific device. The
distance and parents vectors are allocated using malloc_device.
Lines 3-4 set up the input and output frontiers in a vertex view,
indicating the vertices being processed in the current and upcoming
iterations.

The advance operator (lines 9-13) expands the current frontier
by exploring neighboring vertices, using a user-defined lambda
function to decide which vertices to visit and avoid re-exploration.
Once the frontier is updated, the compute operator (lines 14-17)
updates vertex properties such as the distance from the source by
applying a lambda function to all vertices in the output frontier,
with calculations parallelized across GPU threads. Although the
compute operator can be combined with the advance operator,
it does not face load-balancing issues, leading to efficient global
memory access and improved performance. However, it requires
waiting for an additional GPU kernel to complete. The framework
iterates through the graph smoothly by swapping frontiers at each
step’s end (line 18), and the clear function (line 19) prepares the
output frontier for the next cycle. This process repeats until the
input frontier is empty (line 8). In this scenario, we assumed that
the distance vector is initialized outside of the function.

4 Frontier Data Layout
In graph traversal operations, vectors-based frontiers add discov-
ered vertices to a vector. A common technique [21] employs the
GPU’s local shared memory to efficiently synchronize the vector’s
end. This involves a small local array that allows for more efficient
atomic operations for synchronization at the vector tail than when
using global memory. When the local array fills up, synchronization
shifts to the global tail. A prefix sum is then computed among local
tails of thread blocks, and the data from the local array is coalesced
into the global memory.
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Figure 2: Bitmap frontier vs vector-based frontier during a
BFS iteration.

One criticism of this approach is that due to the irregular nature
of graphs, an uneven number of vertices may be processed on dif-
ferent GPU thread blocks, causing only a few blocks to fully utilize
local memory before synchronizing with global memory. Another
key concern is the vector-based frontier’s issue with duplicate ele-
ments. To address this, state-of-the-art frameworks transition from
vector to bitmap representation between steps [14, 28, 33], or scan
vectors to remove duplicates [6, 15, 36]. Furthermore, vector-based
frontiers can be inefficient in space, particularly with high-degree
vertices typical of social network graphs, where the number of ac-
tive vertices in a frontier rapidly increases in early iterations. Meng
et al. [22] delve deeper into these issues. Therefore, we focused on
creating a memory-efficient data layout, like bitmaps, to represent
active vertices in each algorithm step.

4.1 Bitmap Implementation
Our approach utilizes a bitmap format, which provides multiple
benefits over traditional vector-based methods. By representing
each vertex or edge’s active state with just one bit, memory usage
is greatly minimized, especially beneficial for high-degree vertex
graphs where vectors demand more space. Additionally, synchro-
nization is simplified as atomic operations set bits in the bitmap to
represent active vertices, avoiding the complexity of vector man-
agement and prefix sum calculations.

The bitmap is composed of an array of unsigned integers (either
32 or 64 bits), each linked to a specific set of graph vertices. Thus,
each vertex corresponds to one bit within a particular integer. The
bitmap size for a graph𝐺 = (𝑉 , 𝐸) is given by ⌈|𝑉 |/𝑏⌉, where 𝑏 rep-
resents the bit size of each integer. Figure 2 illustrates the contrast
between bitmap- and vector-based frontiers, showing that a bitmap
saves more memory by using a single 8-bit integer for vertex repre-
sentation, and also prevents vertex duplication, as demonstrated
with the vertex labeled 3.

In an advance operation, when vertex 𝑢 detects vertex 𝑣 , 𝑣 is
added to the frontier in two steps: (1) locate the bitmap array in-
dex through 𝑖𝑑 (𝑣)/𝑏, where 𝑖𝑑 (𝑣) is 𝑣 ’s ID and 𝑏 is the number of
bits per array element; (2) find the corresponding bit using 𝑖𝑑 (𝑣)
mod 𝑏. This method assigns each vertex a unique bit, naturally
preventing duplicates and eliminating extra post-processing. The
Grus framework [35] opted for a boolmap method, linking each
vertex to a byte, but this increases memory use eightfold.

0
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2
5

4

0 1 2 3 4 5 6 7
1 1 0 1 1 0 0 0

0 1 2 3 4 5 6 7
0 0 1 1 1 0 0 0

0 1 2 3 4 5 6 7
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&

=

Input  
Frontier B

Input  
Frontier A

Segmented  
Intersection Output  

Frontier A

Output  
Frontier B

Segmented 
Intersection

Figure 3: Segmented Intersection computed by leveraging
the bitmap representation.

Frontiers Operators. By portraying the frontier as a bitmap, the
intersection, union, and subtraction operations are efficiently
executed. These frontier transformations can run parallelly via
bitwise operations: intersection through bitwise AND, union via
bitwise OR, and symmetric difference using bitwise XOR. This
method takes advantage of parallelism by mapping each integer in
the bitmap to a GPU thread, optimizing frontier transformations.
Figure 3 illustrates the segmented reduction (finding the common
neighborhood of two frontiers) using the intersection operator.

4.2 Workload Mapping
In this section, we adopt SYCL naming conventions for the GPU
platform model. A workitem (𝑇 ) describes a GPU thread mapped to
one kernel execution. A workgroup (𝑊𝐺) is a one-, two-, or three-
dimensional thread set, similar to a block in CUDA. A subgroup (𝑆𝐺)
indicates a range of consecutive workitems processed as a SIMT
vector, called awarp in CUDA and awavefront in AMD.With respect
to the memory model, local memory in SYCL corresponds to shared
memory in CUDA—a user-managed memory region accessible by
all workitems within the same workgroup.

The workload balancing on the bitmap involves multiple threads
assisting each other in processing one vertex’s neighborhood at
a time. In SYgraph, this is known as workgroup-mapped load bal-
ancing, where each workgroup handles an integer of the bitmap.
To optimize GPU use, a coarsening factor is introduced, defining
how many integers a workgroup processes, as illustrated in Figure
4a. For a 64-bit integer: with a coarsening factor of 1, a workgroup
handles 64 vertices; a factor of 2 means 128 vertices. This method
achieves efficient load balancing by leveraging the GPU’s intra-
subgroup capabilities for even thread workload distribution. Each
subgroup handles a certain part of the bitmap integer, and the size
of this part depends on both bitmap and subgroup size. Whereas
NVIDIA and AMD GPUs have fixed subgroup sizes, Intel GPUs
allow flexibility with sizes of 16 or 32 threads in SIMT on Intel MAX
1100. This adaptability improves performance by allowing better
use of GPU resources.

Intra-subgroup processing involves two stages, as shown in Fig-
ure 4b. Initially ❶, subgroup collectives, such as scan operations,
are used to compact active vertices into local memory. The local
memory for each workgroup is defined by the coarsening factor
and the range of a bitmap’s single integer. Next ❷, each workitem
in the subgroup cooperatively handles a distinct region of the neigh-
borhood for each vertex previously placed into local memory. This
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Figure 4: Load balancing of the advance operation.
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Figure 5: Worst case scenarios on bitmap-based frontier.

method avoids the need for synchronization, allowing threads in
the same subgroup to process separate neighbors independently
without conflicts (Figure 4c).

Access to global memory for neighborhood processing can be
coalesced, improving memory efficiency, depending on the graph
representation (e.g., CSR or CSC). If a user employs a custom graph
representation, they must ensure neighborhood data locality.

4.3 Two-Layer Bitmap Data Layout
In developing this bitmap approach, we faced two major edge cases
affecting performance: (1) all bits of a bitmap integer are 0, wasting
the workgroup’s processing capacity (Figure 5a), and (2) only one
bit is 1, activating just one subgroup (Figure 5b).

First, consider scenario (2). To keep only one subgroup active,
utilize a 32-bit integer to match a warp on NVIDIA GPUs and a
64-bit integer for AMD GPUs to align with the wavefront size. For
Intel GPUs, set the bitmap integer to 32 and select a subgroup size
of 32 threads. Furthermore, adjust the coarsening factor to keep the
entire compute unit active, enhancing GPU resource usage.

To conserve group resources, we avoid allocating workgroups
to integers that are zero. We accomplish this with a Two-Layer
bitmap (2LB) data layout, whichmaps primary bitmap integers to a
secondary bitmap of size ⌈|𝑉 |/𝑏2⌉. In this layout, a secondary layer
bit is set to 1 if its corresponding primary integer has any bit set to 1,
as shown in Figure 6. When adding a vertex, the corresponding bit
in the second layer is calculated and set to 1 if it’s not already. For
vertex removal, if the integer becomes 0, the second layer bit is reset
to 0. The second layer behaves similarly to the bitmap discussed in
Section 4.1.

1 0 1 1 1 0 1 0 0 0 0 0 1 0 1 1

1 1 0 1 2nd Layer

1th Layer

Figure 6: Example of 2LB data structure. For illustration pur-
poses, the bitmap is represented by 4-bits integers.

Before each advance operation, GPU threads map to integers in
the second layer to find nonzero integers in the first bitmap layer
and store their offsets in a global buffer. During the advance, a set
number of workgroups run on the GPU, iterating over the offsets
buffer to retrieve integers and apply the load-balancing strategy.

4.4 Comparing 2LB with Existing Solutions
CPU graph frameworks have examined using bitmaps to represent
active elements [5, 30, 40]. Bitmaps suit GPU use due to parallel pro-
cessing. Yet, GPUs need different memory access and optimizations
to use bitmaps well. Though memory-efficient, bitmaps can cause
issues on GPUs like scattered memory access, thread divergence,
and load imbalance, hurting performance. Some frameworks use
coarsened bitmaps or warp-wide processing to boost parallelism
and cut memory divergence [2, 32]. SYgraph, with its 2LB frontier
layout, dedicates GPU threads to nonzero bitmap elements, focus-
ing on relevant areas of the first layer. This enhances spatial locality,
cuts memory access, and balances thread workloads, minimizing
underutilization and divergence.

Our approach is naturally duplicate-free and introduces new
load-balancing techniques and optimizations specifically for bitmap-
based GPU processing, unlike other frameworks [33, 35] requiring
bitmap-to-queue transitions to remove redundant nodes.

Incorporating extra bitmap layers can refine our 2LB, turning
the layout into a bitmap-tree. Research [38] examines bitmap-tree
structures on CPUs. Yet, tree-based layouts face difficulties on GPUs
due to irregular memory access patterns and warp divergence from
hierarchical traversals [10]. Additionally, more than two layers
add substantial overhead because of increased computation for
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nonzero integer offsets and extra synchronization during advance
operations. A dynamic number of bitmap levels adds complexity.
With fixed levels, the compiler unrolls loops for setting bits to 1; this
optimization is not feasible with dynamic levels since the compiler
cannot unroll the loop. To address this, we use SYCL’s specialization
constants to inject dynamic host variables as constants in JIT kernel
compilation, although this is efficiently supported mainly on Intel
GPUs. In our tests, two layers were used to optimize workload
balance and overhead effectively.

5 Experimental Evaluation
We compared SYgraph against three state-of-the-art GPU frame-
works: Gunrock [36], Tigr [25], and SEP-Graph [33]. Furthermore,
we evaluated the performance of SYgraph on three different hard-
ware configurations described in Table 4. All execution times re-
ported exclude the time required to transfer the graph from the host
to the device memory. For compiling SYgraph, we utilized oneAPI
SYCL compiler v2024.2.1 provided by Intel[18], and CUDA v12.3.

The experimental datasets consist of six graphs, representing
both real-world and synthetic scenarios. Among the real-world
datasets are soc-Twitter-2010 (twitter) and Hollywood-2009 (hollyw),
which are social network graphs, as well as Indochina-2004 (indo),
a web hyperlink directed graph gathered from Indochina domain
sites. The synthetic dataset kron-g500-logn21 (kron) exemplifies a
graph generated using the R-MAT model [13]. These four datasets
are characterized by scale-free properties, with diameters below
20 and highly skewed node degree distributions. In contrast, the
roadNet-CA (CA) and road-USA (USA) datasets are distinguished by
their large diameters and more uniform node degree distributions,
with most nodes having degrees of 12 or less. These datasets are
summarized in Table 3.

5.1 Bitmap Optimizations
As illustrated in Figure 7, the optimizations of Section 4.3 offer
significant benefits. Tests were conducted on the Indochina-2004
dataset by running BFS from a common source, comparing these
optimizations to simple bitmap usage. By enhancing GPU resource
use with the coarsening factor and applying the novel 2LB data
layout to avoid subgroup and workgroup stalls, we achieved a 4.43×
speedup. Notably, a bitmap allows a single integer to represent
64 active graph vertices, optimizing cache efficiency over other
frameworks. This is especially evident after an advance, as the
bits for active vertices are prefetched. Table 5 presents peak L1
cache usage and GPU occupancy during advance steps, providing a
measure for GPU thread workload balance, with metrics gathered
by NVIDIA’s NCU tool [26].

5.2 Comparison Against other Frameworks
The experiments involved uniformly randomly selecting 200 sources
for each graph to run the BC, BFS, and SSSP algorithms, while for
CC, which doesn’t need a source, the experiments were repeated
200 times. Figure 8 on Mach. A (Table 4) displays the comparison,
showing the median and standard deviation, and Table 6 shows SY-
graph’s speedups over other frameworks. Figure 9 shows the GPU
memory transferred in kilobytes during BFS execution across three
datasets: roadNet-CA, Hollywood-2009, and Indochina-2004, chosen

Graph Vertices Edges Avg. Deg. Max Deg.

roadNet-CA (CA) 2M 2,8M 2,8 12
road-USA (USA) 23,9M 28,9M 2,4 9
Hollywood-2009 (hollyw) 1,1M 56,9M 103,4 11K
Indochina-2004 (indo) 7,4M 194,1M 52,4 256K
LiveJournal (journal) 4,8M 69M 28,7 2K
kron-g500-logn21 (kron) 2,1M 91M 86,6 213K
soc-twitter-2010 (twitter) 21,3M 530M 24,8 698K

Table 3: Datasets used in this work, taken from Network
Repository [27] and WebGraph [7, 8].

Mach. Vendor GPU VRAM SYCL Back-End L2 Cache

A NVIDIA Tesla V100S 32GB CUDA v12.3 6MB
B Intel MAX1100 48GB LevelZero, OpenCL 108 MB
C AMD MI100 32GB ROCm v7.0.0 8 MB

Table 4: Hardware setup of the different architectures em-
ployed in the experiments.

CA USA hollyw indo twitter kron

L1H Occ L1H Occ L1H Occ L1H Occ L1H Occ L1H Occ

SYgraph 87% 88% 87% 93% 87% 92% 87% 90% 92% 89% 91% 90%
Gunrock 26% 89% 8% 88% 13% 91% 32% 91% 15% 91% 4% 88%
Tigr 11% 86% 16% 84% 56% 87% 54% 87% 48% 87% 25% 93%
SEP 75% 90% 66% 90% 76% 87% 78% 92% 77% 91% 51% 90%

Table 5: Peak of hardware metrics (i.e. L1 Hit-Rate and Occu-
pancy), during BFS on each dataset on the V100S.

MSI CF 2LB All
0

2

4

S
pe

ed
up
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r
N

o-
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pt
s

Figure 7: Speedup of optimizations on NVIDIA V100S. MSI
matches subgroup size to bitmap integer size; CF applies
coarsening to maximize GPU utilization; 2LB uses a Two-
Layer Bitmap layout; All combines all optimizations.

for their varying frontier evolution properties. It’s important to
consider the SYCL runtime’s extra load (part of the experiments)
absent in native CUDA frameworks when evaluating SYgraph’s
performance, yet SYgraph performs competitively in algorithms
and datasets, with better memory efficiency.

Versus Gunrock. Gunrock reduces the active frontier by remov-
ing redundant nodes after each advance operation. When focusing
on scale-free graphs, SYgraph surpasses Gunrock mainly because

7



ICPP’25, September 8–11, 2025, San Diego, CA, USA Antonio De Caro, Gennaro Cordasco, and Biagio Cosenza

CA USA hollyw indo kron twitter

10
1

10
2

10
3

E
xe

cu
tio

n 
Ti

m
e 

(m
s)

17
.2

26
8.

9

9.
0

24
.6

41
.9

14
5.

0

82
.4

19
.5

34
.8

26
8.

3

28
0.

0

74
.1

 +
 5

1.
1

37
45

.9
 +

 7
61

6.
4

4.
3 

+ 
99

6.
0

25
.6

 +
 2

57
5.

0

15
.6

 +
 6

20
5.

4

13
9.

5 
+ 

57
85

4.
0

39
.2

 +
 1

2.
6

14
.8

 +
 2

0.
1

63
.9

 +
 4

5.
0

34
.4

 +
 4

1.
9

91
.0

 +
 1

30
.0

algorithm = BC

CA USA hollyw indo kron twitter

14
.3

19
5.

9

6.
4

14
.7

17
.2

80
.7

31
.6

29
3.

0

13
.0

34
.8

39
8.

2

17
0.

9

29
.8

 +
 5

1.
8

18
81

.4
 +

 7
68

6.
8

2.
7 

+ 
10

25
.9

15
.7

 +
 2

49
7.

8

8.
8 

+ 
62

33
.1

48
.0

 +
 5

72
47

.0

25
.0

 +
 1

1.
3

81
3.

8 
+ 

14
.2

3.
5 

+ 
18

.6

45
.0

 +
 4

4.
4

2.
9 

+ 
40

.7

43
.0

 +
 1

21
.0

algorithm = BFS

CA USA hollyw indo kron twitter

32
.8

17
63

.1

10
.1

41
.8

13
.1

13
3.

9

50
7.

8

74
37

.9

28
.1

33
.2

73
.6

 +
 5

0.
7

33
70

.4
 +

 7
73

0.
3

4.
3 

+ 
10

14
.6

25
.6

 +
 2

47
2.

9

15
.6

 +
 6

06
8.

9

15
9.

5 
+ 

57
89

3.
0

algorithm = CC

CA USA hollyw indo kron twitter

16
.7

31
8.

5

9.
2

29
.1

26
.0

10
8.

0

35
.2

74
37

.9

16
.2

43
.2

44
4.

5

19
6.

4

34
.7

 +
 6

9.
8

60
0.

4 
+ 

77
25

.7

3.
3 

+ 
15

28
.3

17
.5

 +
 3

65
0.

5

10
.3

 +
 9

22
4.

2

48
9.

1 
+ 

57
36

0.
4

30
.1

 +
 1

1.
7

75
5.

3 
+ 

14
.3

38
.4

 +
 1

9.
0

25
6.

6 
+ 

41
.7

42
.4

 +
 4

0.
7

22
4.

0 
+ 

12
7.

0

algorithm = SSSP

SYgraph Gunrock Tigr SEP
Preprocessing

Figure 8: Comparison of SYgraph against the state-of-the-art graph analytics frameworks on NVIDIA V100S GPU. Bar labels
show time as 𝑥 + 𝑦 (algorithm + preprocessing). When missing, the preprocessing is 0.
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is better. Insets show total memory per framework, following legend order.

CA USA hollyw indo kron twitter

WPP WOP WPP WOP WPP WOP WPP WOP WPP WOP WPP WOP

G
un

ro
ck BC 4.78 4.78 OOM OOM 2.17 2.17 1.41 1.41 6.40 6.40 1.93 1.93

BFS 2.22 2.22 1.50 1.50 2.04 2.04 2.37 2.37 23.12 23.12 2.10 2.10
CC 15.48 15.48 4.22 4.22 2.78 2.78 OOM OOM 2.53 2.53 OOM OOM
SSSP 2.10 2.10 23.35 23.35 1.75 1.75 1.49 1.49 17.11 17.11 1.82 1.82

SE
P

BC 3.00 2.27 OOM OOM 3.88 1.64 4.42 2.60 1.82 0.82 1.52 0.63
BFS 2.54 1.75 4.23 4.15 3.48 0.55 6.09 3.07 2.53 0.17 2.01 0.53
CC - - - - - - - - - - - -
SSSP 2.50 1.80 2.42 2.37 6.21 4.16 10.26 8.83 3.20 1.63 3.25 2.07

T
ig
r

BC 7.26 4.30 42.25 13.93 >99 0.48 >99 1.04 >99 0.37 >99 0.96
BFS 5.72 2.09 48.84 9.60 >99 0.42 >99 1.07 >99 0.51 >99 0.59
CC 3.79 2.24 6.30 1.91 >99 0.42 59.78 0.61 >99 1.19 >99 1.19
SSSP 6.25 2.08 26.14 1.88 >99 0.35 >99 0.60 >99 0.40 >99 4.53

Table 6: Speedup of the execution time median of SYgraph
compared to the other frameworks. WPP includes the pre-
processing time, whereas WOP excludes it. OOM stands for
an out-of-memory error in the specified framework.

SYgraph does not need to eliminate duplicates. A significant perfor-
mance improvement is seen on the Kron graph, which—although
smaller than Indochina—as higher connectivity, leading to many
duplicated vertices at each advance step. For the Indochina dataset,
Gunrock’s CC algorithm exhausts memory, but SYgraph maintains
high performance due to the 2LB data layout. SYgraph also sur-
passes Gunrock in memory efficiency. TheHollywood and Indochina
datasets greatly increase Gunrock’s memory usage. In contrast, SY-
graph’s compact data layout minimizes memory usage, especially
with numerous high-degree vertices. For road network graphs,

SYgraph is more memory-efficient than Gunrock. Furthermore,
SYgraph outperforms Gunrock across all algorithms on both the
roadNet-CA and road-USA datasets, with Gunrock running out of
memory in the BC algorithm and the USA dataset.

Versus Tigr. Tigr provides GPU-hardwired algorithms and a GPU-
friendly CSR variant, but this increases execution time due to graph
transformation time. In both the roadNet-CA and road-USA datasets,
SYgraph outperforms Tigr across all algorithms, attributed in part
to Tigr’s high memory usage for data structure maintenance. As
shown in Figure 9, Tigr consumes 14.09 GB for CA, while SYgraph
only needs 280MB. For the Indochina dataset, Tigr uses 10 GB com-
pared to SYgraph’s 1.15GB, indicating Tigr’s inefficiency with large,
sparse road-like graphs. In terms of scale-free graphs, SYgraph out-
performs Tigr in all scenarios when considering the preprocessing
time. Without considering preprocessing, SYgraph outperforms
Tigr in the Indochina dataset for BC and BFS, and in twitter and
synthetic kron graphs for the CC algorithm.

Versus SEP-Graph. SEP-Graph stands out from other frameworks
by using a hybrid of synchronous and asynchronous execution
models, dynamically selecting between push- and pull-based ap-
proaches. To prevent node duplication, SEP-Graph converts the
queue frontier to a bitmap frontier and then copies values back.
We observe shorter preprocessing times compared to Tigr. SYgraph
performs well in both scenarios, regardless of whether or not pre-
processing time is considered. For the CC algorithm, we couldn’t
find any implementation compatible with SEP-Graph. SYgraph is
more memory efficient than SEP-Graph for scale-free and road-like
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Figure 10: Performance comparison of SYgraph across GPU architectures and backends. Top: distribution per algorithm (rows)
and dataset (columns). Bottom: medians on a shared scale for direct comparison.

graphs. Figure 9 shows an initial increase in SEP-Graph’s memory
usage during initialization, which reduces after the first step. In
the CA dataset, SEP-Graph hits a mid-computation memory high,
due to loading graph data from global memory. We believe that the
memory spike in the middle of the computation of SEP-Graph is
caused by the switch from push-advance to pull-advance, resulting
in more work-items fetching their next edge.

Summarizing, in all datasets and for all algorithms, the geomet-
ric mean of speedups shows that SYgraph surpasses Gunrock by
3.49×, Tigr by 7.51×, and SEP-Graph by 2.29× with and without
preprocessing.

5.3 Performance Evaluation on Different GPUs
Figure 10 shows SYgraph’s performance across the hardware setups
detailed in Table 4. These findings show how different hardware
architectures and backend APIs affect performance with varying
dataset and workload structures. Connected components (CC) in-
herently involve more intensive computation than traversal-based
algorithms like BFS, which helps explain the superior performance
of GPUs such as the NVIDIA V100S and AMDMI100 in dense graph
scenarios.

The NVIDIA V100S GPU consistently performs well across vari-
ous datasets and shows particular strength in dense and medium-
sparse graphs like Hollywood, Indochina, and roadNet-CA. Its CUDA
architecture, with high warp occupancy and efficient memory han-
dling, is particularly effective for compute-heavy workloads. How-
ever, in sparse graphs, its performance diminishes, where memory
access patterns become more irregular and dominate the execution
time, allowing the Intel MAX 1100 to perform comparatively better.

The AMD MI100 GPU, leveraging the ROCm backend, also
demonstrates strong performance on dense graphs, surpassing the
NVIDIA V100S on datasets such as LiveJournal and synthetic Kron
graphs for CC tasks. In contrast, its performance drops in sparse
workloads, where irregular memory access and lower computa-
tional intensity limit its efficiency.

6 Conclusion
SYgraph was developed to address the lack of GPU-based graph
frameworks that support platforms beyond NVIDIA. It offers a
portable, high-performance solution for graph analytics on AMD,
Intel, and NVIDIA GPUs, abstracting hardware complexities for
users. SYgraph outperforms leading GPU-focused frameworks, ex-
ceeding Gunrock by 3.49×, Tigr by 7.51×, and SEP-Graph by 2.29×.
The Intel MAX 1100 excels on sparse graphs (e.g., roadNet-CA,
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road USA), while the AMD MI100 is better for dense datasets. The
NVIDIA V100S offers strong all-around performance.

Although currently limited to single-GPU systems, SYgraph is
well-suited for multi-GPU and multi-node extensions using static
graph partitioning [19], where each GPU handles a local subgraph
and can precompute frontier sizes. Dynamic partitioning introduces
challenges like frontier reallocation and memory reclamation. Fu-
ture work will focus on extending SYgraph to support multi-GPU
execution.
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