
Distributed Load Balancing for Parallel Agent-based Simulations

Biagio Cosenza, Gennaro Cordasco, Rosario De Chiara and Vittorio Scarano

ISISLab, Dip. di Informatica ed Applicazioni “Renato M. Capocelli”

Università degli Studi di Salerno, 84084, Fisciano (SA), Italy

{cosenza,cordasco,dechiara,vitsca}@dia.unisa.it

Abstract—We focus on agent-based simulations where a
large number of agents move in the space, obeying to some
simple rules. Since such kind of simulations are computational
intensive, it is challenging, for such a contest, to let the number
of agents to grow and to increase the quality of the simulation.
A fascinating way to answer to this need is by exploiting
parallel architectures.

In this paper, we present a novel distributed load balancing
schema for a parallel implementation of such simulations. The
purpose of such schema is to achieve an high scalability. Our
approach to load balancing is designed to be lightweight and
totally distributed: the calculations for the balancing take place
at each computational step, and influences the successive step.

To the best of our knowledge, our approach is the first
distributed load balancing schema in this context.

We present both the design and the implementation that
allowed us to perform a number of experiments, with up-to
1, 000, 000 agents. Tests show that, in spite of the fact that the
load balancing algorithm is local, the workload distribution is
balanced while the communication overhead is negligible.

Keywords—Distributed Computing, Parallel Algorithms,
Behavioral Simulations.

I. INTRODUCTION

The simulation of groups of agents moving in a virtual

world is a topic that has been investigated since the 1980s.

A widespread approach to this kind of simulations has been

introduced in [16] and it takes inspiration from particles

system [13]. In a particle system there is an emitter that

generates a number of particles that move accordingly to

a set of physics-inspired parameters (e.g. initial velocity,

gravity). The particle system approach is expanded with the

purpose of simulating a group of more complex entities,

dubbed autonomous agents, whose movements are related

to social interactions among group members.

A classical example of use of this approach is the flocking

model proposed by Reynolds [16], which allows to simulate

a flock of birds in the most natural possible way. Elements of

this simulated flock are usually named boids (from birdoid)

and got instilled a range of behaviors that induces some

kind of personality. The behaviors are, in the most of

cases, simply geometric calculations performed on each

boid. Commonly, every boid is subject to three different

behaviors: separation from other boids, alignment to other

boids flight direction, and cohesion to other boids. Each of

these behaviors is rendered by a force that is applied on

the boid, and whose intensity depends on a fixed number

of near flockmates, within a given radius which determines

the boid’s Area Of Interest (AOI). Actual implementations

of the boid model may vary [6], [11], [15], [19] but the idea

is the following: at every step of the simulation, for every

boid b and for each behavior in the personality the system

calculates a request to accelerate in a certain direction as the

result of a weighted sum of all the forces applied on b.

As a counterpart of the realism achieved, the computation

complexity of the model is O(n2), where n is the number

of agents in the simulation. A way to achieve good per-

formances, as the number of the agents increases, we can

distribute the calculation on a number of workers. Several

parallel implementation of the flocking model have been

proposed (cf. [6], [7], [15], [24]). A good parallel imple-

mentation should strive to achieve two conflicting goals: (1)

balance the overall load distribution, and (2) minimize the

communication overhead due to tasks interdependencies.

A simple way to partition the whole work into different

tasks is to assign a fixed number of agents to each avail-

able worker [18]. This approach named agents partitioning

allows a balanced workload but introduce a significant

communication overhead (an all–to–all communication is

required).

By noticing that actual implementations rely on the fact

that the behavior model is designed to mimic natural-

inspired models where the limited visibility of real birds

allow to bound the range of interaction, most of agent-

based simulations systems limit the interaction between

agents to a fixed range that is agent’s Area of Interest

(AOI). Using this observation, several space partitioning

approaches have been proposed [7], [23], [24] in order to

reduce the communication overhead.

In this approach, the space to be simulated is partitioned

into regions. Each region, together with the agents contained

are assigned to a worker. Since the AOI radius of an agent is

small compared with the size of a region, the communication

is limited to local messages (messages between workers,

managing neighboring spaces, etc.). On the other hand, since

agents can migrate between regions, load imbalance may

occur among the workers. To maintain an even distribu-

tion a dynamic partition mechanism is needed: during the

simulation, the space partition is updated according to the

observed density (number of agents) of the regions. Again

the dynamic partitioning should be conducted without intro-

ducing too much communication. For instance, it may be

not reasonable to update the partitioning using a centralized

approach, i.e. the master decides which agents are to be

migrated to which worker, since it would require an all–to–

all communications.



Figure 1. Two snapshots showing 1, 000 agents simulated by 4 workers: (left) a simulation step corresponding to a sparse distribution of agents; (right)
a dense distribution (middle regions are thinner). This screenshots have been obtained by gathering simulation data on a single worker that performed the
rendering. A video is available [5].

A. Related work

Parallel Agent-based Simulation: While the area of agent-

based simulations has been actively investigated for decades,

commonly the results are concentrated on small scale sim-

ulations, i.e. with few thousands agents. Scientific interest

raised in studying large scale simulation, with the interaction

of more than 100, 000 agents [21], [23].

Several shared memory agent-based simulation implemen-

tations have been proposed, on a large variety of hardware

platforms. In [6] the mapping of the flocking behavioral

model with obstacles avoidance on streaming-based GPUs

is presented. An agent-based simulation optimized for large

shared-memory platforms is described in [9]. Similarly, [15]

implemented crowds and other flock-like group motion on

a multi-core Cell Processor.

Different approaches have been tried on cluster of high

performances PCs. Such architectures still require some

efforts to tackle the communication/load balancing trade-

off. In [12] a 2D parallel framework is proposed that is

capable of simulating and rendering the motion of 10, 000
pedestrians in real time. This framework is based on a

master/worker paradigm: for each simulation step, the master

assigns a portion of pedestrian to each worker. Each worker

simulates the pedestrian assigned and sends back the result

of its computation.

In [23] a result is presented that is particularly relevant to

our discussion but from a different point of view: it present

a non-conventional use of the flocking model for document

clustering, furthermore they implement such algorithms as

an hybrid solution, on a cluster of GPUs.

Dynamic load balancing: Dynamic load balancing schemes

represent a challenge for parallel implementation in several

context [8]. In general the problem is described by task

graph, where nodes represent tasks and edges represent task

interactions. Graph and hypergraph partitioning techniques

[1] have been employed to schedule tasks onto processors

to balance load while taking into account data locality.

In [4] a dynamic portioning schema have been proposed

for Parallel Ray Tracing. In [24] the authors implemented

Reynolds’ model using a space partitioning scheme with

centralized load balancing. Unfortunately, the high computa-

tional cost of the proposed load balancing schema precludes

the use of such approach on each simulation step, as the

authors report. Centralized load balancing systems exhibit

scalability problem, especially on petascale/exascale sys-

tems. In [22] a hierarchical load balancing approach is pro-

posed. The authors argue that decentralized approaches tend

to yield poor performances due to incomplete information

exchanged by neighboring processor. Other approaches have

been explored to parallelize massive simulations on different

architectures; for instance in [3] a system is presented that

exploits a Peer-to-Peer infrastructure in order to distribute

the computational load.

More complex partitioning approaches tackle the load

balancing from a geometrical point of view: irregular shape

regions (convex hulls) [20]; quad tree, k-d tree, and region

growing [17]; Orthogonal Recursive Bisection [7].

B. Our Result

All the works previously cited in this sections exploits

centralized or hierarchical load balancing schemes, i.e. in-

volving a worker→master→worker communication pattern

every time load balancing is needed. There are two reasons

that let us suppose that centralized schema may not be the

way to improve significantly the performances, especially in

case of large simulations, where all-to-all communication is

prohibitively expensive. First, the centralizing communica-

tions is bottleneck and may have a negative impact to the

system scalability. Second, whereas a centralized balancing

schema is used, complex calculations are usually involved,

harming system performances.

In this paper we present a novel distributed load balancing

schema whose purpose is to achieve efficiency and an high

scalability. Our approach to load balancing is designed to

be lightweight and totally distributed: the calculations for

the balancing take place at each computational step, and

influence the successive step. To the best of our knowledge,

our approach is the first distributed load balancing schema

in this context.

We present both the design and the implementation that

allowed us to perform a number of experiments, with up-

to 1, 000, 000 agents, whose results are discussed in the



Figure 2. The simulation carried out on 4 workers: upper part the phases
each worker executes per step; lower part the main region divided into 4
slices of different sizes, associated to workers.

following sections.

Our results also show that it is not always true that de-

centralized approaches yield poor performances: the amount

of information to be exchanged in order to balance the

load depends on the kind of interactions between the tasks.

In particular, in Agent-based simulation, the interaction

between the task are local and this allows to obtain good

performances through a simple local approach.

II. BACKGROUND

A. Behavior Model
Our work is based on the flocking model developed by

Reynolds [16]. Every agent has its own personality that is

the result of a weighted sum of a number of behaviors. The

simulation is performed in successive steps: at each step,

for each agent and for each behavior in the personality,

the system calculates a request to accelerate in a certain

direction in the space, and sums up all of these requests;

then the agent is moved along this result.

The most trivial implementation of the neighborhood

calculation consists in a O(n2) proximity screening, and for

this reason the efficiency of the implementation is yet to be

considered an issue.

B. Parallel Agent Simulation
We developed a distributed agent-based simulation in

order to evaluate and compare the performances of several

fully distributed load balancing schemes (cf. Sec. IV).

We use a space partitioning model where each worker

maintains a portion of the simulated space, and is responsible

for the simulation of agents belonging to such region. In

order to guarantee the consistency of parallel implementation

with respect to the sequential one, each worker needs to

collect information about the neighboring regions.

At the beginning of the simulation, the system randomly

generates a quantity of agents within the main region. Each

simulation step is formed by three phases (cf. Fig. 2). We

describe here the execution of a single step for a single

worker. First of all the worker sends to its neighbors the

information about the agents belonging its region but that

also may fall into the AOI of the neighbor’s agents. This

information exchange is locally synchronized in order to let

the simulation run consistently.

We use a standard approach to achieve a consistent

synchronization of the distributed simulations. Each step

is associated with a fixed state of the simulation. Regions

are simulated step by step. Since the step i of region r is

computed by using the states i− 1 of r’s neighborhood, the

step i of a region cannot be executed until the states i−1 of

its neighborhood have been computed and delivered. In other

words, each region is synchronized with its neighborhood

before each simulation phase.

During the simulation phase the contribution of each

behavior for each agent is calculated as a weighted sum.

At the end of simulation phase, each worker is able to yield

some statistics on the distribution of the agents within the

region. These statistics are shared with neighbors workers

in such a way that all the workers are able to calculate

the novel partitioning on their own. We emphasize that

the load balancing algorithm, which moves the boundary

between neighbor regions, is quite simple (cf. Sec.IV) and

fully distributed, hence it will not represent a bottleneck for

the system.

III. AGENTS PARTITIONING

In order to better exploit the computing power provided

by the workers of the system, it is necessary to design the

system so that the simulation always evolves in parallel,

avoiding bottlenecks. Since the simulation is synchronized

after each step, the whole simulation advances with the same

speed provided by the slower worker in the system. For this

reason it is necessary to design the system in order to balance

the load between the workers.

The whole simulation will be carried out in a tridi-

mensional space that will be partitioned along one single

dimension in regions (cf. Fig. 1). Depending on the kind

of simulation, we define a number of parameters that will

influence the load balancing schema. A main region will be

set large enough to contain all the agents in each step of the

simulation; this to assure that agents will not move outside

this region. The radius for the agents’ AOI is named ǫ. This

radius, as well as the shape of the AOI, is correlated to the

type of simulation. In the following we assume that ǫ is small

compared to the size of a region and each agent, in a single

step of simulation, is not allowed to move for more than

ǫ. The value of ǫ is important because it will influence the

amount of communication between two contiguous workers

(i.e., workers with adjacent regions).

A. Handling the boundary
For sake of clarity we will discuss the rationale behind

the design of our load balancing schema by describing it

in the simpler case of two workers. In Sec. IV-E we will

generalize the schema to a any number of workers.

The main region is partitioned into two regions, Sl and

Sr. In Fig. 3 we depict this situation, please note that even



Figure 3. Load balancing with two workers: the main region is partitioned
into Sl, simulated by pl and Sr simulated by pr . El (resp. Er) represents
the portion of Sr , (resp. Sl) that needs to exchange information before
each simulation step.

if our system is designed for tridimensional space, for sake

of clarity, our figures will present a bidimensional space.

For brevity, we will describe the idea for worker pl, without

loss of generality. The agents present in the region Sl are

simulated by worker pl. AOI of some of the agents in Sl will

intersect Sr and, for this reason, throughout the simulation it

will be necessary to share the information about the agents

in such AOI. To handle this situation we define El as the

portion of Sr that contains the agents laying in the AOI of

some of the agents in Sl. In other words, El is the leftmost

ǫ-wide slice of Sr.

The worker pl, to carry out the simulation of agents in

Sl, needs all the agents lying in both Sl and El. Before

each simulation phase, the position of the agents lying in

El needs to be updated with information coming from pr,

the same happens for Er and pl.
When more than two workers are involved, each worker,

except for the first and the last one, has two neighbors.

In this case before each simulation phase, each worker

communicates with both its neighbor in order to be updated

about the position of agents close to its boundaries.

Algorithm 1 Handling the boundary (code for worker pl)

1: {Partition agent’s set in 4 subset}
2: Ma ←− { agents in case (a) }
3: Mc ←− { agents in case (c) }
4: Oc ←− { agents in Ma belonging to Er }
5: Oa ←− Mc

6: send Oa and Oc to pr
7: receive Ia and Ic from pr
8: agents in Sl ←− {Ma ∪ Ia}
9: agents in El ←− {Mc ∪ Ic}

B. Special Cases
The exchange of information between pr and pl needs

to take into account the fact that agents may move across

the regions and different cases may raise (cf. Fig. 4): (a) an

agent laying in Sl before and after the simulation step; (b)

an agent laying in El before and after the simulation step;

(c) an agent moves from Sl to El; (d) an agent moves from

El to Sl. Case (a) and (b) are easy to be handled because the

Figure 4. Four cases for agent position when moving to a new simulation
step.

agent continues to be simulated by the same worker. Cases

(c) and (d) is where communication between pl and pr is

needed to hand over the agent.

We will shortly discuss case (c) in Algorithm 1 where an

agent moves from Sl to El, in this case two things must be

taken into account: the agent will be sent to pr (line 6) and

it must be also kept by pl because it may belong to the AOI

of some of the agents in Sl (line 9).

IV. DISTRIBUTED LOAD BALANCING SCHEMES

In this Section we present three load balancing schemes

we have developed and tested on our system. The rationale

of these schemes is to provide a distributed load balancing

by using just local communication.

As described above, the main region is partitioned into

regions by slicing it along one single dimension (cf. Fig. 3).

We denote with αl the size of Sl along such dimension.

Let sl (resp. sr, el, er) be the number of agents in Sl

(resp. Sr, El, Er). Based on the load observed by pl and its

neighbor, the load balancing algorithm will modify the value

of αl by moving the boundary; the purpose is to improve

the load balancing for the successive step of computation.

More formally, the load balancing algorithm aims to select

the best value of αl in order to:

1) minimize the unbalancing, that is |sl − sr|;
2) minimize the communication required for the synchro-

nization phase, that is |el + er|

To apply each one of the following load balancing schema,

the workers, pl and pr, need some additional information

that will be exchanged during the load balancing phase. We

will shortly discuss this overhead for each of the following

algorithms.

Assumptions: Our load balancing schema relays on two

assumptions: (i) the measure of the computational load of

each worker is linear in the number of agents (ii) the

agents are uniformly distributed along the dimension the

splitting occurs. The effect of the first approximation will

be mitigated by successive refinements of the method, the

effects of the second approximation deserve further investi-

gations but we emphasize that, regardless of the effect of this

assumption, we experienced good performances also with a

large number of agents (cf. Sec. V).



A. Static partitioning (static)
In order to provide a baseline scheme which will be

compared with our proposals, we have implemented a static

partitioning, where the value of α is fixed, for each worker,

to dx/w, where w is the number of workers/regions and dx
is the size of the main region along the splitting dimension.

The scheme will be also used to evaluate the degree of

unbalancing of a given testbed simulation.

B. Region wide load balancing (dynamic1)
Assuming that agents are uniformly distributed along the

splitting dimension in the whole region assigned to a worker,

we may define a simple algorithm that moves the boundary

by evaluating the values of sl and sr.

Let αl(t) be the value of αl at simulation step t. The load

balancing algorithm updates the value of αl according to the

following equation:

αl(t+ 1) = αl(t) +
sr − sl

2
·
αl(t) + αr(t)

sl + sr
, (1)

where the first fraction represents the number of agents

to be moved to balance the load between pl and pr and the

second one is the amount of linear space containing a single

agent, under the “uniformly distributed agents” assumption

stated above.

The overhead of communication, for pl, is the transmis-

sion of sr and αr. Thus, after each simulation phase, pl
exchanges such information with pr and then both, use Eq.

1 to compute the new partitioning. Notice that no additional

communication is required to spread the updated boundary

position. Clearly this communication does not represent a

bottleneck because it is limited to only two values, for

each step. Notice that, when the number of worker is 2,

the exchange of information is not strictly required because

both sr and αr can be calculate by pl by using sl and αl,

respectively. Of course this is not true in the most general

case with more workers.

C. Mitigated region wide load balancing (dynamic2)
In this algorithm we aim at mitigate the effects of

approximation of considering agents uniformly distributed

across the space. In general, such distribution depends on the

behavioral model and is usually not uniform. For instance

several flock simulations models converge to a state where

agents aggregate into few dense groups [2]. On the other

hand, if the distribution had been uniform, a static partition-

ing would be enough to achieve a good load balancing.

The load balancing schema above is prone to a phe-

nomenon, when a large flock of agents rapidly moves

between the two workers: the boundary is moved too ag-

gressively in the attempt of balancing the flock movement

(cf. Sec. V for test results) and it oscillates. Such oscillation

is an effect of the assumption of uniformity of distribution,

that underestimates the amount of agents approaching the

boundary. Clearly the wider this oscillation is the larger is

the number of agents to be handed over between pl and pr.

Figure 5. Load balancing with multiple workers. Each worker, after each
simulation step, updates, by turns, one of is boundaries. Turns are chosen
in such a way that neighbor workers always update the position of their
shared boundary at the same simulation steps.

To mitigate this effect we have slightly changed the

balancing equation, by adding a constant k that adds some

inertia in moving the boundary:

αl(t+ 1) = αl(t) + k ·
sr − sl

2
·
αl(t) + αr(t)

sl + sr
(2)

We experimentally observed that this version of the equa-

tion with k = 1/2 provides good results in alleviating the

oscillations.

D. Restricted assumption load balancing (dynamic3)

We refined the algorithm even more by relaxing the

assumption of uniformity of the distribution of the agents:

the assumption will be applied just to the spaces El and

Er, instead of Sl and Sr. As a counterpart we had to

limit the per-step movement of the boundary to ǫ which

represent the size of both El and Er along the splitting

dimension. However such restriction does not represent a

real limitation since during the test we have performed, the

requested movement was always smaller than ǫ.

αl(t+1) = αl(t)+







min
(

ǫ, sr−sl

2
· ǫ

el

)

if sr > sl,

max
(

−ǫ, sr−sl

2
· ǫ

er

)

otherwise.

In this new equation the overhead of communication

consists in exchanging the values of sl, el and αl. Again

such information can be rapidly shared between neighbor

workers.

E. Generalization to multiple workers

The load balancing schemes we defined above for two

workers can be easily generalized to any number of workers.

We describe here a distributed load balancing schema for

parallel agent based simulations. The system is composed

by a set of n workers having a linear topology, i.e. worker

pi has two neighbors, pi−1 and pi+1. Obviously, p0 and

pn−1 have a single neighbor.

The rationale behind the generalization is straightforward,

in the 2-workers load balancing schema we used pl and pr to

indicate the two workers. The workers will be distinguished,

by their index, in even workers and odd workers. The idea is

to apply the same 2-workers schema to couples of neighbors

workers, on alternate steps: on even simulation steps, even

workers play the role of pl and the odd workers play the

role of pr, while in the odd simulation steps even workers

will be pr and odd workers will be pl. In Fig. 5 is depicted

the generalization in the case of 8 workers: two successive

steps of simulation are shown. In the visualization it appears



Figure 6. Distribution of agents per worker. Each color represents a different worker. x-axis indicates the simulation step (1, 000 simulation steps are
depicted) while th y-axis represents the distribution of agents. (a) (100, 000; 8; static) (b) (100, 000; 8; dynamic1) (c) (100, 000; 8; dynamic2) and (d)
(100, 000; 8; dynamic3).

clear how on alternate steps worker 0 and worker n will not

perform any load balancing.

V. TESTS AND PERFORMANCES

A. Test setting

We have implemented the 4 methods by developing a

parallel version of OpenSteer[14]. OpenSteer is an open-

source C++ library that implements a plurality of steering

behaviors to be used as a standard library for videogames.

Hardware details: Test machine is an IBM HS21 Cluster

with 256 nodes available at CRESCO Project computing

platform, Portici ENEA Center. Each node is equipped with

2 Xeon Quad-Core Clovertown E5345 at 2.33 GHz and

16 GByte RAM. The nodes are interconnected with an

Infiniband network.

Software details: Our parallelization is based on MPI [10].

In particular the system mapped MPI processes onto cores.

Underlying MPI implementation implicitly switches be-

tween most suitable protocol to let workers to communicate

(e.g. Infiniband rather than Inter-Processes Communication).

We performed tests using a different number of agents, but

fixed agent density (hence setting the main region volume

accordingly). We set a bounding radius in order to assure

that agents does not go outside the main region. For each

agent overtaking this radius, an additional backward steering

force is added to the standard model.

The state of an agent comprises two vectors: position

and speed. Other common properties (i.e. mass) are defined

constant and are not shared/sent between workers. Of course,

the bigger is the state of an agent, the more expensive will

be the communication overhead of the parallelization.

B. Load balancing analysis

The batch of tests we performed simulates 1, 000, 10, 000,

100, 000 agents running on 8, 16, 32 and 64 cores. Each tests

lasts 11, 000 simulation steps, the first 1, 000 steps have been

discarded in order to let the simulation to stabilize. The set

of tests we performed is the result of the Cartesian product

{1, 000, 10, 000, 100, 000} × {8, 16, 32, 64} × {static,

dynamic1, dynamic2, dynamic3}. In the next paragraphs and

in figures we will indicate the test setting by using a triple

took from such set.

For each simulation step run, we collected the number

of agents simulated by each worker/core and the number of

agents exchanged between neighbor workers (communica-

tion).

The test results are encouraging and confirm that

dynamic2 and dynamic3 handle the balancing of the agents

between neighbor workers pretty well. Moreover, the amount

of communication overhead injected by the hand over of

the agents between neighbor workers is negligible. To avoid

cluttering we illustrate the (100, 000; 8; ∗) cases in Fig.

6, reporting the distribution of agents among workers, in

each simulation step, from upper left and clock-wise we

have: static, dynamic1, dynamic2, dynamic3. In Fig. 6.(a)

(100, 000; 8; static) is shown and it depicts the heavy un-

balancing in the distribution of the load: two of the workers

simulate an average of ≈ 30, 000 agents instead of the ideal

12, 500. Fig. 6.(b) shows the dynamic1 algorithm which

provides a better balancing but suffers of the oscillation

phenomenon mentioned in Sec. IV-C. To ameliorate the

visibility of such phenomenon we provides a zoomed section

of the graph (50 simulation steps). The two successive

algorithms, dynamic2 and dynamic3, are shown in Fig. 6.(c)

and (d), respectively. The figures represent an almost optimal

balanced graph showing that each worker handles ≈ 12, 500
agents. Both the algorithms sensibly reduce the oscillations,

even if they are still measurable, shown in Fig. 7; please note

how dynamic3 (b) behaves slightly better than dynamic2 (a),



Figure 7. Number of agents per worker: each series indicates the number of
agents per worker. x-axis indicates the simulation step (1, 000 simulation
step are depicted) while the y-axis represents the number of agents. (a)
(100, 000; 8; dynamic2). (b) (100, 000; 8; dynamic3).

by providing oscillations that have smaller amplitude.

In Table I we summarize the results we measured in

other test settings. For each test we report the standard

deviation (σ) of the number of agents per worker and

the total number of agents exchanged during the com-

munication phase of the algorithm (communication). The

results indicates that together with a good performance

in reducing the unbalancing we measure an increase in

the communication cost. The best refinement of the load

balancing schema, dynamic3 provides substantially smaller

standard deviation but needed more than the double of agents

exchange between workers, respect to the static partitioning.

The oscillations we noted in dynamic1 deeply impact on the

communication cost, this can be noticed by comparing the

performances of (100, 000; 8/16; dynamic1) and (100, 000;

8/16; dynamic2/dynamic3). On the other hand, when the

number of workers is higher, dynamic1 behaves as dynamic2
and dynamic3 in terms of communication but the balancing

worsens. Overall the dynamic3 algorithm performs pretty

well on all test cases. Moreover, the improvement provided

by dynamic algorithms increase as the number of either

workers or agents grow (see scalability in Fig. 8).

Figure 8. Scalability: A comparison between (100, 000;*; static) (dotted
line) and (100, 000;*; dynamic3) (continuous line). For each algorithm,
100, 000 agents are simulated with 8, 16, 32 and 64 workers. Each tests
lasts 12, 000 simulation steps. x-axis indicates the number of workers; y-
axis plots the average number of simulation steps per second.

Discussion: Finally, we performed a quite massive simula-

tion: (1, 000, 000; 64; dynamic3). The objective of this test

is to measure the system performances in circumstances that

can hardly be managed by a single machine. The execution

of a run of 2, 000 steps required1 140, 754 ms, which

correspond to 14.21 simulation steps computed per second.

We have also observed that, after a small number of steps

(around 1, 000 on the test with 1, 000, 000 agents), where

the load balancing algorithm stabilizes, the performances of

the system are quite constant.

It is worth to mention that the load balancing strategy

provides also several additional benefits. For instance, it

allows to simplify the tuning of the spatial data structure

(e.g. select the appropriate grid resolution) which is used

for proximity screening. Since the optimal granularity of

the spatial data structure depends on the number of agents

to be managed, when the workload balance is assured,

we may assume that the number of agent per worker is

roughly constant, hence we are able to choose the optimal

granularity.

VI. CONCLUSION

Agent based simulations, due to their computational

power requirements, appear to be a natural application for

parallel architectures. In this context it is challenging to

design the system so that the simulation evolves in parallel,

avoiding bottlenecks, in order to better exploit such comput-

ing power. Since the simulation must be synchronized after

each step, the system advances with the same speed as the

slower worker in the system is capable of. For this reason

it is necessary to take into account a good implementation

of a load balancing mechanism. Several centralized load

balancing schemes have been proposed. A common problem

with these approaches is that the centralized management

usually requires a large amount of communication – between

workers and the master node, which act as a load balancing

manager – that consumes bandwidth and introduces latency.

We presented a novel distributed load balancing schema

whose purpose is to achieve an effective load balancing

introducing a low communication overhead. Our schema

is designed to be lightweight and totally distributed: the

calculations for the balancing take place on every worker

at each computational step, and influences the successive

step; each communication is local (i.e., between neighbor

workers). To the best of our knowledge, our approach is the

first distributed load balancing schema in this context.

We presented both the design and the implementation that

allowed us to perform a number of experiments, with up-to

1, 000, 000 agents. The tests revealed that the architecture

presents a quite good scalability: the communication over-

head, due to the local workers interaction, is dominated by

1In order to measure the total parallel computation time, we used a
specific worker that, on every step, collects information about the global
completion time.



Table I
LOAD BALANCING/COMMUNICATION RESULTS

× (static) (dynamic1) (dynamic2) (dynamic3)

(1, 000; 8){σ - communication} 131.16 - 272, 976 36.03 - 624, 562 12.44 - 573, 275 6.39 - 584, 961

(10, 000; 8){σ - communication} 1292.54 - 581, 611 550.83 - 2, 336, 951 13.44 - 1, 355, 381 6.49 - 1, 236, 951

(100, 000; 8){σ - communication} 11, 480.80 - 746, 753 5, 324.28 - 22, 261, 600 10.94 - 1, 278, 788 5.14 - 1, 217, 074

(100, 000; 16){σ - communication} 5, 815.35 - 1, 407, 684 2, 146.36 - 16, 067, 865 12.13 - 3, 504, 703 7.43 - 3, 484, 038

(100, 000; 32){σ - communication} 3, 945.53 - 2, 927, 194 743.21 - 12, 714, 472 30.55 - 6, 896, 584 9.12 - 6, 877, 622

(100, 000; 64){σ - communication} 1, 975.22 - 5, 622, 336 260.21 - 15, 888, 243 106.06 - 13, 679, 714 19.44 - 13, 204, 903

the speed-up achieved thanks to the better load balancing,

provided by our schema.

Future works: Our load balancing schema aims at balancing

along a single dimension the uneven distribution of agents

in a tridimensional space. A reasonable evolution of such

schema is to take into account the fact that the space is

3d: current implementation does not properly balance work

when agent clustering fully exploits the three dimensions.

For instance, in the simulation of a flock of birds or a

school of fishes we may find several flocks overlapping and

spreading across the whole space and not just lying along

one single dimension. We plan to extend our technique to a

multi dimensional space.

We reported some early tests of a simulation with

1, 000, 000 agents. One technical problem we solved was

the creation of such amount of agents: this phase is still

centralized, in the current version of the system, and for

this reason the number of agents in the system was limited

by the memory (and the capability of representation) of a

single worker. We plan to distribute such phase in order to

reach a number of agents that is proportional to the number

of workers in the system and it is clear that in such scenario

we would easily reach the goal of a multi-millions agents

simulation.

REFERENCES

[1] U.V. Catalyurek, E.G. Boman, K.D. Devine, D. Bozdag, R. Heaphy,
and L.A. Riesen. Hypergraph-based dynamic load balancing for
adaptive scientific computations. In Proc. of 21st Intl. Par. and Distr.

Proc. Symp. (IPDPS), pages 1–11. IEEE, 2007.

[2] B. Chazelle. Natural algorithms. In Proc. of the 20th ACM-SIAM

Symp. on Discr. Alg. (SODA’09), pages 422–431, 2009.

[3] G. Cordasco, R. De Chiara, U. Erra, and V. Scarano. Some
Considerations on the Design of a P2P Infrastructure for Massive
Simulations. In Proc. of Inter. Conf. on Ultra Modern Telecommuni-

cations (ICUMT ’09), 2009.

[4] G. Cordasco, B. Cosenza, R. De Chiara, U. Erra, and V. Scarano.
Experiences with Mesh-like computations using Prediction Binary
Trees. Scalable Computing: Practice and Experience, Scientific

international journal for parallel and distributed computing (SCPE),
10(2):173–187, June 2009.

[5] B. Cosenza, G. Cordasco, R. De Chiara and V. Scarano.
http://www.isislab.it/projects/DistrSteer/
Dist Steer: Parallel Distributed Agent-Based Simulations, 2010.

[6] R. De Chiara, U. Erra, V. Scarano and M. Tatafiore. Massive
simulation using gpu of a distributed behavioral model of a flock
with obstacle avoidance. In Proceedings of Vision, Modeling and

Visualization 2004 (VMV), Nov. 2004.

[7] F. Fleissner and P. Eberhard. Load Balanced Parallel Simulation of
Particle-Fluid DEM-SPH Systems with Moving Boundaries. In Proc.

of Parallel Computing: Architectures, Algorithms and Applications

(ParCo’07), 2007.

[8] K. Hwang and Z. Xu. Scalable Parallel Computing: Technology,

Architecture, Programming. McGraw-Hill, Inc., 1998.

[9] B. Knafla and C. Leopold. Parallelizing a Real-Time Steering
Simulation for Computer Games with OpenMP. In Proc. of Parallel

Computing: Architectures, Algorithms and Applications (ParCo’07),
2007.

[10] The Message Passing Interface (MPI) standard.
http://www.mpi-forum.org/

[11] R. Narain, A. Golas, S. Curtis, and M.C. Lin. Aggregate dynamics
for dense crowd simulation. In ACM SIGGRAPH Asia 2009 papers,
pages 1–8, New York, NY, USA, 2009.

[12] M. J. Quinn, R. A. Metoyer, and K. Hunterzaworski. Parallel
implementation of the social forces model. In in Proceedings of

the Second International Conference in Pedestrian and Evacuation

Dynamics, pages 63–74, 2003.

[13] W. T. Reeves. Particle systems—a technique for modeling a class of
fuzzy objects. In SIGGRAPH ’83: Proceedings of the 10th annual

conference on Computer graphics and interactive techniques, pages
359–375, New York, NY, USA, 1983. ACM.

[14] OpenSteer, Steering Behaviors for Autonomous Characters.
http://opensteer.sourceforge.net/, 2004

[15] C. W. Reynolds. Big fast crowds on ps3. In Sandbox ’06: Proceedings

of the 2006 ACM SIGGRAPH symposium on Videogames, pages 113–
121, New York, NY, USA, 2006. ACM.

[16] C. W. Reynolds. Flocks, herds and schools: A distributed behavioral
model. In SIGGRAPH ’87: Proceedings of the 14th annual confer-

ence on Computer graphics and interactive techniques, pages 25–34,
New York, NY, USA, 1987. ACM.

[17] A. Steed, and R. Abou-haidar. Partitioning crowded virtual environ-
ments. In In Proceedings of the ACM symposium on Virtual reality

software and technology, pages 7–14, 2003.

[18] S. Plimpton. Fast parallel algorithms for short range molecular
dynamics. Journal of Computational Physics, 117 n.1:1–19, 1995.

[19] A. Treuille, S. Cooper, and Z. Popović. Continuum crowds. In
SIGGRAPH ’06: ACM SIGGRAPH 2006 Papers, pages 1160–1168,
New York, NY, USA, 2006. ACM.

[20] G. Vigueras, M. Lozano, J. M. Orduna, and F. Grimaldo. A
comparative study of partitioning methods for crowd simulations.
Appl. Soft Comput., 10(1):225–235, 2010.

[21] G. Yamamoto, H. Tai, and H. Mizuta. A platform for massive agent-
based simulation and its evaluation. In Proc. 6th Intern. Conf. on

Autonomous Agents and Multiagent Systems (AAMAS), 2007.

[22] G. Zheng, E. Meneses, A. Bhatelé and L. V. Kalé Hierarchical
Load Balancing for Charm++ Applications on Large Supercomputers.
In International Workshop on Parallel Programming Models and

Systems Software for High-End Computing (P2S2), 2010.

[23] Y. Zhang, F. Mueller, X. Cui, and T. Potok. Large-Scale Multi-
Dimensional Document Clustering on GPU Clusters. In IEEE

International Parallel and Distributed Processing Symposium, 2010.

[24] B. Zhou and S. Zhou. Parallel simulation of group behaviors. In

WSC ’04: Proceedings of the 36th conference on Winter simulation,

pages 364–370. Winter Simulation Conference, 2004.


